Upload an image and identify the taxon of the shell
Published on: 17 March 2025
Cone snails (genus Conus) comprise one of the most diverse groups of marine gastropods, with over 850 recognized species. Despite significant variability in coloration
and subtle morphological traits, Conus shells often appear similar in overall shape, making their accurate identification a fine-grained image classification challenge.
In this study, we present a convolutional neural network (CNN) model trained on a large dataset of 130,373 images spanning 518 Conus species. Images were gathered from
multiple sources and extensively curated to address issues of inconsistent labeling and background noise. Preprocessing steps included segmentation of individual shells,
uniform background replacement, and resizing, thereby standardizing visual inputs for the model.
Performance metrics (recall, precision, F1 score) show strong results, with an overall accuracy of 97% and macro-averaged precision and recall around 96–97%. Confidence
intervals further support the reliability of these findings, even for classes with fewer validation images. We compare our approach with two previous Conus models:
one developed at Naturalis Biodiversity Center and another by Qasmi et al., each employing different image-processing and classification strategies.
Our results underscore that large-scale species coverage—when coupled with thorough preprocessing—does not necessarily diminish model accuracy. Furthermore, the model’s
solid performance amid considerable species-level imbalances highlights the viability of CNN-based systems for difficult, fine-grained biodiversity classification tasks.
This comprehensive dataset and refined workflow pave the way for future integrative studies that combine museum collections, citizen science, and advanced AI methodologies
to enhance Conus taxonomy and broader molluscan research.
The genus Conus (commonly known as cone snails) represents one of the most diverse groups of marine gastropods, with a current total of 853 recognized extant species
according to MolluscaBase and WoRMS (WoRMS, MolluscaBase).
The Conus genus is one of the largest in the Mollusca phylum. Until a decade ago, its species were split across 89 genera [1],
but are now largely consolidated within Conus genus (WoRMS, MolluscaBase).
Despite this tremendous species richness, cone snails exhibit a notable uniformity in general shell shape and pattern, which can differ only by subtle color variations,
banding, or small morphological traits. As a result, discriminating among the many Conus species becomes a daunting fine-grained image classification challenge,
demanding models that can isolate and interpret minute differences in shell markings.
A Conus CNN model is designed to learn features that capture these nuances, allowing it to separate species based on visual cues in shell images.
However, the complexity of this task escalates with the number of species (i.e., classes) included: each new class introduces additional inter-class similarities and
increases the potential for misclassification [2].
Moreover, adding classes means collecting and processing more images, thus necessitating greater computational resources and
longer training times. For all Conus species together we have a dataset of 130 373 images.
Consequently, scaling a Conus CNN model to encompass all 853 species underscores both the difficulty of fine-grained recognition and the importance of
robust, efficient training strategies.
The shells of the Conus genus have a characteristic morphology, the most important features for species identification are pattern and colouration. Other important features are the form of the spire and the width versus the length.
Parameter | Value | Comments |
---|---|---|
Species in the Conus genus | 853 | MolluscaBase/WoRMS accessed Jan 2025 |
Species with images | 529 | Status Jan. 2025 |
Species with 25 images or more | 518 | Status Jan. 2025. 11 species have less than 25 images and were excluded. |
Total number of images in the dataset | 130 373 | Status Jan. 2025 |
Species with the most images | Conus textile, 2923 images |
The dataset for the Conus CNN model comprises 130,373 shell images representing 518 Conus species (see table I). From the 529 species for which images were collected, all species with less than 25 images were removed (see Minimum number of images needed for each species). A total of 518 species were used. These images were aggregated from multiple sources, including online databases and museum or field photograph repositories (Identifying Shells using Convolutional Neural Networks: Data Collection and Model Selection). Additionally, broad community-driven efforts (e.g. citizen science platforms) have contributed to the pool of images – modern biodiversity projects have amassed massive image collections of specimens. The dataset comprises images from the following sources: museum collections (4.3%, 5640 images), online citizen science platforms (18.1%, 23661 images) and commercial shell websites (77.6%, 101071 images). The original Conus image dataset is 12% larger, many images were removed because the image quality is bad, or other objects are visible in the picture (hands, other animals, labels, etc.). Also images that contains more than one shell and could not be split in images with only 1 shells were eliminated.
For training a HP Omen 30L GT13 is used. It contains a Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz 3.50 GHz processor, with 64GB RAM, Nvidia GeForce RTX 3080 10GB.
All images were pre-processed. If more than 1 shell was visible on the picture, several images were generated, 1 image for each shell. The background was replaced with
a uniform black background. A square image was made by padding the black background. All shells were resized (400 x 400 px). A last visual selection was made before producing
the final image dataset. Overall, 10-20% of the images were removed for various reasons (when other objects were visible in the picture such hands, habitat, text, etc.).
Preparing a labeled dataset of 518 species presents significant annotation hurdles. One major challenge is taxonomic ambiguity. Cone snail taxonomy has been in flux – historically cone snails were split in 89 genera [1], but the last decade most species were merged in the genus Conus (see MolluscaBase/WoRMS). As a result, the same species might be known by multiple names, or what were once separate species might have been merged. Such inconsistencies across image sources can lead to mislabeling (e.g., an image labeled with an outdated name). Careful curation was needed to reconcile synonyms and ensure each image is tagged with a valid, accepted species name.
Another challenge is the morphological similarity among species: many Conus shells differ only in subtle pattern or color variations. Non-experts may confuse one species for another, especially if shell patterns overlap or the specimen is an atypical individual. This means some portion of the images could be erroneously labeled, introducing noise into the training data.
Metrics were calculated using the sklearn.metrics module, functions accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report were used. To calculate the confidence intervals (95%). A maximum of 200 images were used to calculate the metrics and confidence intervals. Bootstrapping was used [4]. Bootstrapping, being a non-parametric method, does not rely on the normality assumption. A 1000 runs were performed for each species to calculate the intervals.
From these 529 species for which images are available, 518 have more than 25 images which are used to construct a model (see Minimum number of images needed for each species). These 518 species and the number of images used are listed in Table II. The distribution of images among species is shown in the next figure.
The dataset of 130,373 images were split into 80% training and 20% testing data. This means that the species with the least images (total of 25 images) has 20 images in the training dataset. There will be more than 20 images if the original image shows several shells (or views of the same shell) because separate images were made for each shell in the original images.
Hyperparameter | Value | Comments |
---|---|---|
Batch Size | 64 | The batch size determines the number of samples processed in each iteration. |
Epochs | 100 | The number of epochs determines how many times the entire training dataset is passed through the model. Because early-stopping is used, less than 100 epochs were needed. Fine-tuning usually requires fewer epochs compared to training from scratch. |
Optimizer | Adam | The optimizer determines the algorithm used to update model weights during training. |
Learning rate | 0.0002 | |
Fine-tuning | top 3 layers unfreezed | |
Top layer dropout | 0.25 | |
Regularization | 0.0001 |
Some limited parameter tuning was performed, however the initial hyperparameters gave already good results (data not shown). The learning rate was decreased from initial 0.0005 to 0.0002, and the top layer dropout increased from 0.2 to 0.25 (see also Identifying Shells using Convolutional Neural Networks: Data Collection and Model Selection). This limited hyperparameter tuning was done iteratively. The final training was run for 73 epochs using early stopping. Inference was performed on the validation set and analyzed using sklearn.metrics, classification_report. The summary statistics are provided in table IV.
Statistic | Value |
---|---|
Categorical Accuracy | 0.97 |
Macro Average Recall | 0.96 |
Macro Average Precision | 0.97 |
Macro Average F1 | 0.96 |
Weighted Average Recall | 0.97 |
Weighted Average Precision | 0.97 |
Weighted Average F1 | 0.97 |
When comparing the F1 score based on the validation set with the F1 Score where training set images were added (to a max. of 200 images), we see for the majority of the species no large difference (see figure below). Only for a few species, those that have a low "Validation" F1 Score, we see a large difference with the F1 Score that includes training images (the species Conus compressus, Conus gloriamaris, Conus turritinus and Conus vezzaroi). This is expected.
The confusion matrix shows which species are confused most often. Following species are confused most often:
Conus ardisiacus | Conus aemulus | Conus asiaticus | Conus alabaster | Conus andenensis | Conus angasi |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Additional images were collected after model creation. This anecdotal test for several species confirm the performance of the model (Table VI).
Species | Recall (Conf. interval) | New images | Correct prediction | Wrong prediction | Recall (for test images) | Avg. (softmax) probability |
---|---|---|---|---|---|---|
Conus ammiralis | 0.98 (0.96-0.995) | 85 | 85 | 0 | 1.00 | 0.99 |
Conus striatus | 0.965 (0.935-0.986) | 43 | 41 | 2 | 0.95 | 0.93 |
Conus mustelinus | 0.994 (0.979-1.0) | 53 | 52 | 1 | 0.94 | 0.98 |
Conus merletti | 0.973 (0.903-1.0) | 51 | 46 | 5 | 0.89 | 0.90 |
Conus amadis | 0.975 (0.941-1.0) | 24 | 23 | 1 | 0.90 | 0.96 |
Developing a CNN-based classification model for the Conus genus involves a variety of unique challenges stemming from both the taxonomic complexity of this group and the subtle characteristics that distinguish its species. One of the most significant hurdles is that Conus species are primarily differentiated by their color patterns, which can be very similar across species. Even minor variations in lighting, shell wear, and image quality can obscure these differences, making it difficult for a CNN to accurately distinguish one species from another.
Compounding this challenge is the sheer size of the Conus genus—currently recognized to include 853 species—making it one of the largest genera within the Mollusca phylum (WoRMS, MolluscaBase). Handling such a large number of classes naturally demands more computational resources, including significant memory capacity. As a result, training a Conus CNN model can be both computationally expensive and time-consuming, often taking over four hours on our infrastructure.
Another important factor is that Conus shells are highly sought after by collectors, leading to a relatively large pool of publicly available images. On the one hand, this abundance of data provides a rich resource for model training. On the other hand, it requires careful data management to account for variations in image quality, resolution, and lighting conditions, as well as potential imbalances in how frequently each species is photographed.
Altogether, these considerations—high species diversity, subtle morphological and color distinctions, and a sizable but variably curated dataset—highlight the complexity of creating a robust Conus CNN model. Building such a model requires thorough data curation, meticulous preprocessing, and a well-designed computational infrastructure capable of supporting prolonged training periods. Our CNN model achieved an accuracy of 96%, utilizing 130 373 cone snail shell images.
Before model training, extensive pre-processing is performed. All images were analyzed to detect the number of shells in the image and a separate image was made for each shell. If possible, the background was changed to black. A fixed input size of 400x400 pixels was used. Images were made square if needed. A final , manual step was included to select images that clearly show shell features that help in species identification.
Metrics calculated for each species (recall, precision and F1 score) shows that a large proportion of all species can be identified reliable. Calculation of the confidence intervals support this conclusion.
Two other models of the Conus genus were created before, both with good performance [5, 6]. The team at Naturalis, Leiden created several models for several topics, including also a Conus model. The model was trained on 797 Conus species, 15 877 images. Performance of the model is not communicated, but a limited tests (data not shown) show a good performance. N. Qasmi et al. have also made a Conus AI model, based on 47 600 images on 119 Conus species. Their model has 95% accuracy using a combination of Random Forest (RF), XGBoost (XGB) methods and feature extraction using a CNN.
Two other Conus genus recognition models have been previously published, each demonstrating promising but somewhat different approaches and datasets [5, 6]. First, a team at Naturalis in Leiden created several AI-based image-recognition pilots, among which was a Conus model trained on 15,877 images spanning 797 species [5]. Although overall performance results were not formally published, a small pilot evaluations (data not shown) suggested the model delivered robust predictions for many Conus species. This suggests that even with a moderately sized dataset (15,877 images), accurate species-level classification can still be achieved if the training images are curated carefully and taxonomic labels are standardized (e.g., via WoRMS).
Second, a recently reported model by Qasmi et al. [6] employed a combined approach of deep learning (VGG16 for feature extraction) and ensemble supervised learning (Random Forest and XGBoost). Their dataset encompassed 47,600 images of 119 Conus species, achieving around 95% accuracy. Notably, their workflow involved explicit feature-engineering steps—such as color moments, local binary patterns, and Haralick textures—before applying ensemble classifiers. This pipeline effectively demonstrated how hybrid methods (deep feature extraction plus machine-learning classifiers) can yield strong performance in a challenging fine-grained domain.
Compared to these two models, the CNN described in this study substantially broadens the species coverage to 518 species, incorporating 130,373 images—a dataset volume almost three times as large as Qasmi’s and well above the Naturalis pilot. Nonetheless, it attains a similarly strong performance: an accuracy of 96% with a macro-average F1 score around 0.96. This outcome underscores two important points:
Another distinguishing factor is the volume and diversity of images. In the Naturalis pilot, images came predominantly from a handful of museum collections plus some private collections (15,877 total) [5]. Here, over 130,000 images were aggregated from a wide array of sources, including community-driven repositories, potentially bringing greater variance in lighting conditions, viewpoints, and shell morphologies. While this diversity strengthens generalizability, it also escalates demands on data preprocessing, standardization, and computational power. In particular, the workflow included automated image segmentation (one shell per image) and uniform background replacement—steps that appear to significantly streamline model training. Both the Naturalis pilot and Qasmi et al. [6] used similarly rigorous approaches for data cleaning, but with smaller datasets and fewer species, the effect of image variation may have been comparatively lower.
At last, a notable distinction in the current study is the use of transfer learning and fine-tuning, particularly leveraging an EfficientNet architecture pretrained on ImageNet. Although ImageNet does not contain seashell images, the extensive and diverse features learned from over a million labeled images still confer a significant advantage when training on the Conus dataset—or any other seashell dataset. By pretraining on ImageNet and then fine-tuning on domain-specific images, the model inherits rich, general-purpose visual representations that aid in discerning even subtle morphological details of shells. This approach is particularly effective for fine-grained biodiversity classification, where expert-labeled data are often scarce and species distinctions can be minute. [7].
Although direct performance comparisons can be confounded by differences in taxonomy, image sources, or evaluation protocols, these concurrent findings strongly support the viability of AI-based classification for large, visually diverse mollusk genera. Future work may involve combining the strengths of these approaches: unifying data from multiple sources, benchmarking different architectures or ensemble methods, and assessing the impact of refined taxonomic standards on model reliability.
One of the major challenges in building a robust Conus classification model is the imbalance in species representation, where some species have thousands of images while others have only a few. This imbalance is a common issue in biological datasets, where rare or newly discovered species often have limited available data [1, 2]. Few-shot learning techniques based on meta-learning and contrastive learning have been successfully applied in biodiversity classification to address data scarcity [8]. In recent studies, prototypical networks and metric-based learning have enabled models to recognize species with only a few labeled images by learning generalized feature spaces that capture taxonomic similarities [9, 10]. Similarly, contrastive learning, which pretrains models using large unlabeled datasets, has demonstrated superior transferability for species recognition tasks [11, 12]. Future work could explore such approaches to enhance classification performance for Conus species with very few training images, reducing the impact of dataset imbalance. By incorporating these advanced transfer-learning methods, AI models could better support biodiversity research, particularly for rare and underrepresented species.
This Conus AI model is a node of the hierarchical CNN model available at Identifyshell.org.
In summary, this work demonstrates the feasibility and accuracy of a large-scale CNN-based classification model for Conus shells — one of the most diverse and taxonomically
challenging groups within the Mollusca. By assembling a dataset of over 130,000 images representing 518 species, we highlight the key hurdles inherent to fine-grained shell
identification, including taxonomic ambiguity, limited or imbalanced species-specific data, and subtle morphological differences. Careful data curation, background
standardization, and strategic model fine-tuning were crucial in achieving consistent performance across hundreds of species, as evidenced by high macro-averaged metrics
and reliable confidence intervals.
The findings underscore that high coverage of Conus species need not compromise classification accuracy, provided the dataset is sufficiently robust and preprocessing steps
are meticulously executed. Comparing our results to earlier Conus AI models further illustrates how diverse computational strategies—ranging from end-to-end CNN training
to hybrid feature extraction—can yield strong results in challenging biodiversity contexts. These approaches collectively validate the viability of automated shell
recognition on a scale that can significantly accelerate research and improve collection management for museums, citizen science platforms, and other stakeholders
interested in marine biodiversity.
Validation | All Images | |||||
---|---|---|---|---|---|---|
Species | # Validation Images |
Recall | Precision | F1 | F1 | F1 Difference |
Conus abbas | 26 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus abbreviatus | 17 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.988 | 0.012 |
Conus abrolhosensis | 25 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.984 | 0.016 |
Conus achatinus | 42 | 0.929 (0.84-1.0) | 0.907 (0.815-0.978) | 0.918 (0.846-0.968) | 0.952 | -0.035 |
Conus acutangulus | 95 | 0.979 (0.948-1.0) | 0.969 (0.93-1.0) | 0.974 (0.948-0.995) | 0.985 | -0.011 |
Conus adamsonii | 82 | 0.988 (0.958-1.0) | 0.988 (0.961-1.0) | 0.988 (0.968-1.0) | 0.985 | 0.003 |
Conus adenensis | 7 | 1.0 (1.0-1.0) | 0.28 (0.107-0.455) | 0.438 (0.194-0.625) | 0.54 | -0.103 |
Conus advertex | 37 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.984 | 0.016 |
Conus aemulus | 51 | 0.941 (0.873-1.0) | 0.923 (0.843-0.983) | 0.932 (0.875-0.977) | 0.935 | -0.003 |
Conus africanus | 17 | 1.0 (1.0-1.0) | 0.85 (0.692-1.0) | 0.919 (0.818-1.0) | 0.961 | -0.042 |
Conus alabaster | 8 | 0.875 (0.571-1.0) | 0.875 (0.556-1.0) | 0.875 (0.625-1.0) | 0.842 | 0.033 |
Conus albuquerquei | 14 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.993 | 0.007 |
Conus alconnelli | 21 | 1.0 (1.0-1.0) | 0.955 (0.85-1.0) | 0.977 (0.919-1.0) | 0.967 | 0.01 |
Conus alexandrei | 19 | 1.0 (1.0-1.0) | 0.95 (0.833-1.0) | 0.974 (0.909-1.0) | 0.975 | -0.0 |
Conus alexandrinus | 8 | 0.875 (0.571-1.0) | 1.0 (1.0-1.0) | 0.933 (0.727-1.0) | 0.945 | -0.012 |
Conus algoensis | 19 | 1.0 (1.0-1.0) | 0.95 (0.833-1.0) | 0.974 (0.909-1.0) | 0.975 | -0.001 |
Conus aliwalensis | 12 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus allaryi | 12 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.95 | 0.05 |
Conus amadis | 120 | 0.975 (0.941-1.0) | 0.967 (0.933-0.993) | 0.971 (0.947-0.99) | 0.97 | 0.001 |
Conus ambiguus | 24 | 0.917 (0.8-1.0) | 0.815 (0.654-0.947) | 0.863 (0.744-0.952) | 0.924 | -0.061 |
Conus ammiralis | 200 | 0.98 (0.96-0.995) | 0.99 (0.973-1.0) | 0.985 (0.971-0.995) | 0.985 | 0.0 |
Conus amphiurgus | 15 | 1.0 (1.0-1.0) | 0.882 (0.692-1.0) | 0.938 (0.818-1.0) | 0.924 | 0.013 |
Conus amplus | 6 | 1.0 (1.0-1.0) | 0.857 (0.556-1.0) | 0.923 (0.714-1.0) | 0.912 | 0.011 |
Conus anabathrum | 57 | 1.0 (1.0-1.0) | 0.966 (0.914-1.0) | 0.983 (0.955-1.0) | 0.975 | 0.008 |
Conus anabelae | 11 | 0.909 (0.7-1.0) | 0.909 (0.667-1.0) | 0.909 (0.737-1.0) | 0.973 | -0.064 |
Conus andamanensis | 14 | 1.0 (1.0-1.0) | 0.933 (0.778-1.0) | 0.966 (0.875-1.0) | 0.966 | 0.0 |
Conus anemone | 132 | 0.848 (0.783-0.904) | 0.957 (0.918-0.991) | 0.9 (0.857-0.936) | 0.893 | 0.007 |
Conus anemone anemone | 7 | 0.857 (0.5-1.0) | 1.0 (1.0-1.0) | 0.923 (0.667-1.0) | 0.912 | 0.011 |
Conus anemone novaehollandiae | 48 | 0.938 (0.861-1.0) | 0.818 (0.712-0.919) | 0.874 (0.796-0.937) | 0.936 | -0.062 |
Conus angasi | 9 | 1.0 (1.0-1.0) | 0.75 (0.455-1.0) | 0.857 (0.625-1.0) | 0.898 | -0.041 |
Conus antoniomonteiroi | 11 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.973 | 0.027 |
Conus aplustre | 28 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.976 | 0.024 |
Conus arafurensis | 10 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.99 | 0.01 |
Conus araneosus | 37 | 1.0 (1.0-1.0) | 0.974 (0.909-1.0) | 0.987 (0.952-1.0) | 0.989 | -0.003 |
Conus araneosus nicobaricus | 54 | 0.981 (0.938-1.0) | 1.0 (1.0-1.0) | 0.991 (0.968-1.0) | 0.995 | -0.004 |
Conus archetypus | 11 | 0.909 (0.7-1.0) | 1.0 (1.0-1.0) | 0.952 (0.823-1.0) | 0.973 | -0.021 |
Conus archiepiscopus | 124 | 0.903 (0.85-0.953) | 0.762 (0.698-0.827) | 0.827 (0.779-0.87) | 0.87 | -0.043 |
Conus archon | 21 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus ardisiaceus | 11 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.938 | 0.062 |
Conus arenatus | 178 | 0.972 (0.943-0.994) | 1.0 (1.0-1.0) | 0.986 (0.971-0.997) | 0.97 | 0.016 |
Conus aristophanes | 46 | 1.0 (1.0-1.0) | 0.979 (0.927-1.0) | 0.989 (0.962-1.0) | 0.99 | -0.001 |
Conus armadillo | 34 | 0.971 (0.896-1.0) | 1.0 (1.0-1.0) | 0.985 (0.945-1.0) | 0.997 | -0.012 |
Conus artoptus | 20 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.98 | 0.02 |
Conus asiaticus | 14 | 0.929 (0.769-1.0) | 0.929 (0.778-1.0) | 0.929 (0.814-1.0) | 0.92 | 0.009 |
Conus asiaticus lovellreevei | 16 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.975 | 0.025 |
Conus ateralbus | 44 | 0.955 (0.889-1.0) | 0.857 (0.745-0.952) | 0.903 (0.825-0.962) | 0.95 | -0.047 |
Conus atlanticus | 24 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus atractus | 5 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.983 | 0.017 |
Conus attenuatus | 29 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.983 | 0.017 |
Conus augur | 46 | 0.978 (0.923-1.0) | 1.0 (1.0-1.0) | 0.989 (0.96-1.0) | 0.995 | -0.006 |
Conus aulicus | 128 | 0.953 (0.915-0.986) | 1.0 (1.0-1.0) | 0.976 (0.955-0.993) | 0.974 | 0.002 |
Conus aurantius | 29 | 0.931 (0.821-1.0) | 1.0 (1.0-1.0) | 0.964 (0.902-1.0) | 0.977 | -0.012 |
Conus auratinus | 14 | 1.0 (1.0-1.0) | 0.933 (0.778-1.0) | 0.966 (0.875-1.0) | 0.986 | -0.02 |
Conus aureus | 116 | 0.871 (0.805-0.927) | 0.953 (0.908-0.99) | 0.91 (0.862-0.945) | 0.893 | 0.017 |
Conus aureus paulucciae | 10 | 0.9 (0.667-1.0) | 1.0 (1.0-1.0) | 0.947 (0.8-1.0) | 0.99 | -0.043 |
Conus auricomus | 18 | 0.833 (0.643-1.0) | 0.536 (0.344-0.725) | 0.652 (0.465-0.793) | 0.8 | -0.148 |
Conus aurisiacus | 81 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus australis | 157 | 0.994 (0.98-1.0) | 0.987 (0.968-1.0) | 0.99 (0.979-1.0) | 0.98 | 0.01 |
Conus austroviola | 16 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.983 | 0.017 |
Conus axelrodi | 71 | 0.986 (0.95-1.0) | 0.986 (0.954-1.0) | 0.986 (0.961-1.0) | 0.99 | -0.004 |
Conus babaensis | 9 | 1.0 (1.0-1.0) | 0.818 (0.556-1.0) | 0.9 (0.714-1.0) | 0.947 | -0.047 |
Conus bahamensis | 8 | 0.875 (0.6-1.0) | 1.0 (1.0-1.0) | 0.933 (0.75-1.0) | 0.964 | -0.031 |
Conus bairstowi | 27 | 1.0 (1.0-1.0) | 0.931 (0.828-1.0) | 0.964 (0.906-1.0) | 0.993 | -0.029 |
Conus balabacensis | 28 | 1.0 (1.0-1.0) | 0.903 (0.778-1.0) | 0.949 (0.875-1.0) | 0.966 | -0.016 |
Conus balteatus | 80 | 0.925 (0.859-0.976) | 1.0 (1.0-1.0) | 0.961 (0.924-0.988) | 0.967 | -0.006 |
Conus bandanus | 141 | 0.936 (0.891-0.973) | 0.978 (0.951-1.0) | 0.957 (0.929-0.98) | 0.942 | 0.014 |
Conus barbara | 44 | 0.909 (0.814-0.98) | 0.952 (0.881-1.0) | 0.93 (0.864-0.98) | 0.964 | -0.034 |
Conus barbieri | 28 | 1.0 (1.0-1.0) | 0.966 (0.882-1.0) | 0.982 (0.937-1.0) | 0.993 | -0.011 |
Conus barthelemyi | 145 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.998 | 0.002 |
Conus bartschi | 6 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.971 | 0.029 |
Conus bayani | 34 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.989 | 0.011 |
Conus beatrix | 13 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus behelokensis | 108 | 0.944 (0.898-0.982) | 0.903 (0.845-0.954) | 0.923 (0.883-0.958) | 0.934 | -0.011 |
Conus belairensis | 73 | 1.0 (1.0-1.0) | 0.961 (0.912-1.0) | 0.98 (0.954-1.0) | 0.973 | 0.007 |
Conus bengalensis | 86 | 0.988 (0.962-1.0) | 0.988 (0.961-1.0) | 0.988 (0.97-1.0) | 0.993 | -0.004 |
Conus berdulinus | 21 | 0.857 (0.692-1.0) | 1.0 (1.0-1.0) | 0.923 (0.818-1.0) | 0.953 | -0.03 |
Conus betulinus | 162 | 0.981 (0.958-1.0) | 0.994 (0.98-1.0) | 0.988 (0.973-0.997) | 0.99 | -0.002 |
Conus biliosus | 45 | 0.933 (0.857-1.0) | 0.955 (0.875-1.0) | 0.944 (0.889-0.989) | 0.955 | -0.011 |
Conus biliosus meyeri | 14 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.921 | 0.079 |
Conus biliosus parvulus | 17 | 1.0 (1.0-1.0) | 0.895 (0.727-1.0) | 0.944 (0.842-1.0) | 0.943 | 0.001 |
Conus bizona | 12 | 0.917 (0.714-1.0) | 0.786 (0.5-1.0) | 0.846 (0.643-1.0) | 0.923 | -0.077 |
Conus blanfordianus | 50 | 0.92 (0.833-0.982) | 0.979 (0.926-1.0) | 0.948 (0.893-0.99) | 0.965 | -0.016 |
Conus boavistensis | 19 | 1.0 (1.0-1.0) | 0.95 (0.833-1.0) | 0.974 (0.909-1.0) | 0.949 | 0.025 |
Conus bocagei | 7 | 0.857 (0.5-1.0) | 1.0 (1.0-1.0) | 0.923 (0.667-1.0) | 0.941 | -0.018 |
Conus bocki | 20 | 1.0 (1.0-1.0) | 0.833 (0.68-0.964) | 0.909 (0.81-0.982) | 0.966 | -0.056 |
Conus boeticus | 128 | 0.938 (0.894-0.977) | 0.96 (0.924-0.992) | 0.949 (0.92-0.976) | 0.945 | 0.003 |
Conus borgesi | 50 | 1.0 (1.0-1.0) | 0.98 (0.938-1.0) | 0.99 (0.968-1.0) | 0.975 | 0.015 |
Conus brettinghami | 34 | 0.971 (0.902-1.0) | 0.917 (0.808-1.0) | 0.943 (0.875-0.988) | 0.944 | -0.001 |
Conus brianhayesi | 8 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus broderipii | 10 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.97 | 0.03 |
Conus bruguieresi | 22 | 0.909 (0.769-1.0) | 1.0 (1.0-1.0) | 0.952 (0.87-1.0) | 0.983 | -0.03 |
Conus brunneobandatus | 12 | 1.0 (1.0-1.0) | 0.857 (0.625-1.0) | 0.923 (0.769-1.0) | 0.912 | 0.011 |
Conus brunneus | 31 | 0.968 (0.889-1.0) | 0.968 (0.882-1.0) | 0.968 (0.914-1.0) | 0.968 | 0.0 |
Conus bruuni | 44 | 0.977 (0.923-1.0) | 0.977 (0.917-1.0) | 0.977 (0.936-1.0) | 0.987 | -0.01 |
Conus bulbus | 23 | 0.957 (0.85-1.0) | 1.0 (1.0-1.0) | 0.978 (0.919-1.0) | 0.987 | -0.009 |
Conus bullatus | 200 | 1.0 (1.0-1.0) | 0.985 (0.966-1.0) | 0.993 (0.983-1.0) | 0.978 | 0.015 |
Conus burryae | 13 | 1.0 (1.0-1.0) | 0.929 (0.769-1.0) | 0.963 (0.87-1.0) | 0.978 | -0.015 |
Conus buxeus loroisii | 58 | 0.948 (0.887-1.0) | 0.982 (0.938-1.0) | 0.965 (0.926-0.992) | 0.982 | -0.017 |
Conus byssinus | 28 | 1.0 (1.0-1.0) | 0.875 (0.743-0.976) | 0.933 (0.852-0.988) | 0.962 | -0.028 |
Conus calhetae | 7 | 0.714 (0.333-1.0) | 1.0 (1.0-1.0) | 0.833 (0.5-1.0) | 0.861 | -0.028 |
Conus cancellatus | 21 | 0.952 (0.85-1.0) | 1.0 (1.0-1.0) | 0.976 (0.919-1.0) | 0.942 | 0.033 |
Conus cancellatus capricorni | 11 | 1.0 (1.0-1.0) | 0.846 (0.625-1.0) | 0.917 (0.769-1.0) | 0.944 | -0.027 |
Conus cancellatus finkli | 22 | 0.955 (0.844-1.0) | 1.0 (1.0-1.0) | 0.977 (0.915-1.0) | 0.944 | 0.033 |
Conus canonicus | 78 | 0.962 (0.913-1.0) | 0.862 (0.787-0.929) | 0.909 (0.859-0.953) | 0.939 | -0.03 |
Conus capitanellus | 88 | 1.0 (1.0-1.0) | 0.978 (0.942-1.0) | 0.989 (0.97-1.0) | 0.995 | -0.006 |
Conus capitaneus | 176 | 0.972 (0.945-0.994) | 1.0 (1.0-1.0) | 0.986 (0.972-0.997) | 0.985 | 0.001 |
Conus caracteristicus | 64 | 1.0 (1.0-1.0) | 0.985 (0.952-1.0) | 0.992 (0.975-1.0) | 0.998 | -0.005 |
Conus carcellesi | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.932 | 0.068 |
Conus cardinalis | 15 | 1.0 (1.0-1.0) | 0.882 (0.714-1.0) | 0.938 (0.833-1.0) | 0.919 | 0.018 |
Conus cargilei | 26 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus carioca | 20 | 0.95 (0.824-1.0) | 1.0 (1.0-1.0) | 0.974 (0.903-1.0) | 0.972 | 0.003 |
Conus carnalis | 14 | 0.929 (0.769-1.0) | 0.867 (0.647-1.0) | 0.897 (0.737-1.0) | 0.973 | -0.077 |
Conus castaneofasciatus | 9 | 1.0 (1.0-1.0) | 0.9 (0.667-1.0) | 0.947 (0.8-1.0) | 0.933 | 0.014 |
Conus cathyae | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.989 | 0.011 |
Conus catus | 114 | 0.956 (0.918-0.991) | 0.948 (0.899-0.984) | 0.952 (0.921-0.977) | 0.95 | 0.001 |
Conus cebuensis | 35 | 1.0 (1.0-1.0) | 0.972 (0.907-1.0) | 0.986 (0.951-1.0) | 0.978 | 0.008 |
Conus cedonulli | 48 | 0.979 (0.933-1.0) | 0.922 (0.84-0.984) | 0.949 (0.899-0.989) | 0.97 | -0.021 |
Conus cepasi | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus cervus | 12 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.976 | 0.024 |
Conus chaldaeus | 79 | 0.975 (0.935-1.0) | 1.0 (1.0-1.0) | 0.987 (0.967-1.0) | 0.985 | 0.002 |
Conus chiangi | 29 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.993 | 0.007 |
Conus chiapponorum | 10 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.981 | 0.019 |
Conus chytreus | 25 | 1.0 (1.0-1.0) | 0.926 (0.812-1.0) | 0.962 (0.897-1.0) | 0.977 | -0.015 |
Conus cinereus | 93 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.998 | 0.002 |
Conus circumactus | 53 | 0.981 (0.938-1.0) | 0.881 (0.797-0.955) | 0.929 (0.874-0.972) | 0.963 | -0.035 |
Conus circumcisus | 200 | 0.985 (0.965-1.0) | 0.985 (0.966-1.0) | 0.985 (0.971-0.995) | 0.985 | 0.0 |
Conus clarus | 32 | 1.0 (1.0-1.0) | 0.97 (0.892-1.0) | 0.985 (0.943-1.0) | 0.966 | 0.018 |
Conus clerii | 48 | 0.979 (0.931-1.0) | 0.94 (0.864-1.0) | 0.959 (0.912-0.991) | 0.954 | 0.005 |
Conus cloveri | 21 | 0.952 (0.842-1.0) | 1.0 (1.0-1.0) | 0.976 (0.914-1.0) | 0.986 | -0.011 |
Conus cocceus | 25 | 1.0 (1.0-1.0) | 0.926 (0.818-1.0) | 0.962 (0.9-1.0) | 0.973 | -0.011 |
Conus coccineus | 45 | 0.978 (0.929-1.0) | 1.0 (1.0-1.0) | 0.989 (0.963-1.0) | 0.995 | -0.006 |
Conus coelinae | 21 | 1.0 (1.0-1.0) | 0.955 (0.846-1.0) | 0.977 (0.917-1.0) | 0.959 | 0.018 |
Conus coffeae | 30 | 1.0 (1.0-1.0) | 0.968 (0.894-1.0) | 0.984 (0.944-1.0) | 0.974 | 0.01 |
Conus collisus | 37 | 0.973 (0.909-1.0) | 0.878 (0.771-0.972) | 0.923 (0.853-0.977) | 0.966 | -0.043 |
Conus colmani | 13 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.993 | 0.007 |
Conus compressus | 10 | 0.8 (0.5-1.0) | 0.615 (0.333-0.9) | 0.696 (0.429-0.889) | 0.865 | -0.17 |
Conus conco | 22 | 1.0 (1.0-1.0) | 0.917 (0.789-1.0) | 0.957 (0.882-1.0) | 0.973 | -0.017 |
Conus consors | 161 | 0.932 (0.886-0.968) | 0.98 (0.954-1.0) | 0.955 (0.927-0.976) | 0.946 | 0.01 |
Conus conspersus | 8 | 1.0 (1.0-1.0) | 0.471 (0.235-0.722) | 0.64 (0.381-0.839) | 0.718 | -0.078 |
Conus corallinus | 68 | 0.971 (0.922-1.0) | 1.0 (1.0-1.0) | 0.985 (0.959-1.0) | 0.972 | 0.013 |
Conus corbieri | 16 | 1.0 (1.0-1.0) | 0.8 (0.6-0.957) | 0.889 (0.75-0.978) | 0.952 | -0.063 |
Conus cordigera | 108 | 1.0 (1.0-1.0) | 0.991 (0.97-1.0) | 0.995 (0.985-1.0) | 0.99 | 0.005 |
Conus coronatus | 7 | 1.0 (1.0-1.0) | 0.875 (0.571-1.0) | 0.933 (0.727-1.0) | 0.975 | -0.042 |
Conus crocatus | 104 | 0.99 (0.967-1.0) | 0.99 (0.966-1.0) | 0.99 (0.973-1.0) | 0.98 | 0.01 |
Conus crotchii | 187 | 0.813 (0.755-0.866) | 0.956 (0.922-0.987) | 0.879 (0.842-0.912) | 0.84 | 0.039 |
Conus cuneolus | 117 | 0.863 (0.8-0.924) | 0.871 (0.805-0.93) | 0.867 (0.819-0.909) | 0.864 | 0.003 |
Conus curassaviensis | 40 | 1.0 (1.0-1.0) | 0.976 (0.915-1.0) | 0.988 (0.956-1.0) | 0.972 | 0.016 |
Conus curralensis | 11 | 1.0 (1.0-1.0) | 0.647 (0.417-0.875) | 0.786 (0.588-0.933) | 0.853 | -0.067 |
Conus cuvieri | 31 | 0.935 (0.833-1.0) | 1.0 (1.0-1.0) | 0.967 (0.909-1.0) | 0.968 | -0.001 |
Conus cyanostoma | 24 | 0.958 (0.857-1.0) | 1.0 (1.0-1.0) | 0.979 (0.923-1.0) | 0.984 | -0.005 |
Conus cylindraceus | 33 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus dalli | 17 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.994 | 0.006 |
Conus damottai | 75 | 0.867 (0.785-0.938) | 0.915 (0.841-0.974) | 0.89 (0.832-0.938) | 0.932 | -0.041 |
Conus dampierensis | 20 | 1.0 (1.0-1.0) | 0.909 (0.773-1.0) | 0.952 (0.872-1.0) | 0.972 | -0.019 |
Conus daucus | 102 | 0.843 (0.768-0.909) | 0.945 (0.892-0.981) | 0.891 (0.84-0.933) | 0.907 | -0.016 |
Conus dayriti | 31 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.997 | 0.003 |
Conus decoratus | 11 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus dedonderi | 25 | 0.96 (0.857-1.0) | 0.96 (0.869-1.0) | 0.96 (0.895-1.0) | 0.973 | -0.013 |
Conus delanoyae | 101 | 0.832 (0.753-0.904) | 0.848 (0.772-0.916) | 0.84 (0.78-0.89) | 0.889 | -0.049 |
Conus desidiosus | 7 | 1.0 (1.0-1.0) | 0.778 (0.5-1.0) | 0.875 (0.667-1.0) | 0.925 | -0.05 |
Conus devorsinei | 31 | 1.0 (1.0-1.0) | 0.969 (0.897-1.0) | 0.984 (0.945-1.0) | 0.994 | -0.01 |
Conus diadema | 19 | 0.895 (0.727-1.0) | 0.895 (0.722-1.0) | 0.895 (0.766-0.974) | 0.974 | -0.08 |
Conus diminutus | 12 | 1.0 (1.0-1.0) | 0.8 (0.55-1.0) | 0.889 (0.71-1.0) | 0.953 | -0.064 |
Conus distans | 96 | 0.979 (0.947-1.0) | 0.989 (0.964-1.0) | 0.984 (0.965-1.0) | 0.977 | 0.007 |
Conus dominicanus | 75 | 0.96 (0.913-1.0) | 1.0 (1.0-1.0) | 0.98 (0.955-1.0) | 0.98 | -0.0 |
Conus dorreensis | 63 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus dusaveli | 170 | 1.0 (1.0-1.0) | 0.988 (0.968-1.0) | 0.994 (0.984-1.0) | 0.99 | 0.004 |
Conus easoni | 6 | 0.833 (0.4-1.0) | 1.0 (1.0-1.0) | 0.909 (0.571-1.0) | 0.97 | -0.061 |
Conus ebraeus | 108 | 0.963 (0.923-0.991) | 0.99 (0.968-1.0) | 0.977 (0.953-0.995) | 0.975 | 0.002 |
Conus eburneus | 189 | 0.974 (0.95-0.994) | 0.989 (0.974-1.0) | 0.981 (0.967-0.993) | 0.972 | 0.009 |
Conus echinophilus | 39 | 1.0 (1.0-1.0) | 0.951 (0.872-1.0) | 0.975 (0.932-1.0) | 0.982 | -0.007 |
Conus edaphus | 7 | 0.857 (0.5-1.0) | 0.857 (0.5-1.0) | 0.857 (0.571-1.0) | 0.974 | -0.117 |
Conus eldredi | 9 | 0.889 (0.6-1.0) | 0.889 (0.625-1.0) | 0.889 (0.667-1.0) | 0.945 | -0.056 |
Conus emaciatus | 56 | 0.982 (0.943-1.0) | 0.982 (0.936-1.0) | 0.982 (0.951-1.0) | 0.987 | -0.005 |
Conus encaustus | 36 | 0.972 (0.912-1.0) | 0.972 (0.906-1.0) | 0.972 (0.928-1.0) | 0.986 | -0.014 |
Conus episcopatus | 114 | 0.956 (0.916-0.991) | 0.965 (0.925-0.992) | 0.96 (0.931-0.984) | 0.963 | -0.003 |
Conus episcopus | 12 | 1.0 (1.0-1.0) | 0.923 (0.733-1.0) | 0.96 (0.846-1.0) | 0.992 | -0.032 |
Conus epistomium | 7 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.987 | 0.013 |
Conus ermineus | 90 | 0.933 (0.872-0.978) | 0.955 (0.904-0.989) | 0.944 (0.904-0.974) | 0.96 | -0.016 |
Conus erythraeensis | 16 | 1.0 (1.0-1.0) | 0.842 (0.667-1.0) | 0.914 (0.8-1.0) | 0.945 | -0.031 |
Conus escondidai | 10 | 1.0 (1.0-1.0) | 0.833 (0.6-1.0) | 0.909 (0.75-1.0) | 0.973 | -0.064 |
Conus eversoni | 10 | 1.0 (1.0-1.0) | 0.909 (0.7-1.0) | 0.952 (0.823-1.0) | 0.982 | -0.03 |
Conus excelsus | 36 | 0.972 (0.912-1.0) | 1.0 (1.0-1.0) | 0.986 (0.954-1.0) | 0.992 | -0.006 |
Conus exiguus | 61 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus eximius | 26 | 0.962 (0.87-1.0) | 1.0 (1.0-1.0) | 0.98 (0.93-1.0) | 0.966 | 0.015 |
Conus explorator | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.98 | 0.02 |
Conus felitae | 13 | 1.0 (1.0-1.0) | 0.765 (0.556-0.944) | 0.867 (0.714-0.971) | 0.95 | -0.083 |
Conus fergusoni | 37 | 0.973 (0.911-1.0) | 0.973 (0.903-1.0) | 0.973 (0.928-1.0) | 0.981 | -0.008 |
Conus ferrugineus | 138 | 0.877 (0.819-0.932) | 0.877 (0.818-0.931) | 0.877 (0.835-0.914) | 0.886 | -0.009 |
Conus figulinus | 110 | 0.982 (0.955-1.0) | 0.964 (0.928-0.992) | 0.973 (0.949-0.992) | 0.975 | -0.002 |
Conus fijisulcatus | 6 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus filmeri | 7 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.962 | 0.038 |
Conus fischoederi | 27 | 0.963 (0.879-1.0) | 0.929 (0.81-1.0) | 0.945 (0.872-1.0) | 0.974 | -0.029 |
Conus flavescens | 22 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.987 | 0.013 |
Conus flavidus | 118 | 0.983 (0.956-1.0) | 0.967 (0.93-0.992) | 0.975 (0.952-0.992) | 0.97 | 0.005 |
Conus flavus | 14 | 1.0 (1.0-1.0) | 0.824 (0.611-1.0) | 0.903 (0.759-1.0) | 0.952 | -0.049 |
Conus flavusalbus | 10 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.972 | 0.028 |
Conus floccatus | 200 | 0.99 (0.973-1.0) | 0.99 (0.973-1.0) | 0.99 (0.978-0.998) | 0.99 | 0.0 |
Conus floridulus | 95 | 0.968 (0.931-1.0) | 0.979 (0.946-1.0) | 0.974 (0.948-0.995) | 0.968 | 0.006 |
Conus fragilissimus | 5 | 0.8 (0.0-1.0) | 1.0 (0.0-1.0) | 0.889 (0.0-1.0) | 0.982 | -0.093 |
Conus franciscanus | 58 | 1.0 (1.0-1.0) | 0.935 (0.864-1.0) | 0.967 (0.927-1.0) | 0.966 | 0.001 |
Conus franciscoi | 7 | 1.0 (1.0-1.0) | 0.875 (0.545-1.0) | 0.933 (0.706-1.0) | 0.973 | -0.04 |
Conus frigidus | 21 | 0.952 (0.833-1.0) | 0.909 (0.774-1.0) | 0.93 (0.828-1.0) | 0.972 | -0.041 |
Conus fulmen | 23 | 0.913 (0.778-1.0) | 1.0 (1.0-1.0) | 0.955 (0.875-1.0) | 0.964 | -0.01 |
Conus fumigatus | 27 | 0.926 (0.8-1.0) | 0.962 (0.87-1.0) | 0.943 (0.863-1.0) | 0.963 | -0.02 |
Conus furvus | 200 | 0.9 (0.856-0.94) | 0.978 (0.957-0.995) | 0.938 (0.911-0.962) | 0.923 | 0.014 |
Conus fuscatus | 24 | 1.0 (1.0-1.0) | 0.857 (0.714-0.969) | 0.923 (0.833-0.984) | 0.967 | -0.044 |
Conus fuscoflavus | 87 | 0.92 (0.857-0.973) | 0.93 (0.873-0.977) | 0.925 (0.879-0.962) | 0.945 | -0.02 |
Conus fuscolineatus | 30 | 0.967 (0.88-1.0) | 0.967 (0.88-1.0) | 0.967 (0.905-1.0) | 0.97 | -0.004 |
Conus galeao | 28 | 0.893 (0.75-1.0) | 0.833 (0.692-0.962) | 0.862 (0.744-0.952) | 0.929 | -0.067 |
Conus garciai | 15 | 1.0 (1.0-1.0) | 0.938 (0.8-1.0) | 0.968 (0.889-1.0) | 0.974 | -0.006 |
Conus garywilsoni | 13 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.993 | 0.007 |
Conus gauguini | 167 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus generalis | 200 | 0.93 (0.889-0.963) | 0.989 (0.971-1.0) | 0.959 (0.935-0.978) | 0.942 | 0.017 |
Conus genuanus | 46 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus geographus | 89 | 1.0 (1.0-1.0) | 0.937 (0.88-0.98) | 0.967 (0.936-0.99) | 0.983 | -0.015 |
Conus gilvus | 8 | 1.0 (1.0-1.0) | 0.5 (0.231-0.75) | 0.667 (0.375-0.857) | 0.734 | -0.067 |
Conus gisellelieae | 51 | 1.0 (1.0-1.0) | 0.944 (0.87-1.0) | 0.971 (0.93-1.0) | 0.971 | 0.001 |
Conus gladiator | 45 | 1.0 (1.0-1.0) | 0.957 (0.892-1.0) | 0.978 (0.943-1.0) | 0.982 | -0.004 |
Conus glans | 57 | 0.965 (0.914-1.0) | 0.932 (0.857-0.984) | 0.948 (0.901-0.984) | 0.965 | -0.017 |
Conus glaucus | 81 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus glenni | 7 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.987 | 0.013 |
Conus gloriamaris | 21 | 1.0 (1.0-1.0) | 0.636 (0.471-0.8) | 0.778 (0.64-0.889) | 0.943 | -0.165 |
Conus glorioceanus | 40 | 1.0 (1.0-1.0) | 0.976 (0.917-1.0) | 0.988 (0.956-1.0) | 0.995 | -0.007 |
Conus goajira | 8 | 1.0 (1.0-1.0) | 0.889 (0.625-1.0) | 0.941 (0.769-1.0) | 0.965 | -0.024 |
Conus gondwanensis | 7 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.96 | 0.04 |
Conus gonsaloi | 7 | 0.857 (0.5-1.0) | 1.0 (1.0-1.0) | 0.923 (0.667-1.0) | 0.974 | -0.051 |
Conus goudeyi | 7 | 0.857 (0.5-1.0) | 0.75 (0.4-1.0) | 0.8 (0.5-1.0) | 0.947 | -0.147 |
Conus gracianus | 5 | 0.8 (0.249-1.0) | 0.8 (0.25-1.0) | 0.8 (0.286-1.0) | 0.881 | -0.081 |
Conus gradatulus | 30 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.99 | 0.01 |
Conus grahami | 9 | 0.889 (0.625-1.0) | 0.8 (0.5-1.0) | 0.842 (0.6-1.0) | 0.948 | -0.106 |
Conus granarius | 39 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.982 | 0.018 |
Conus granulatus | 19 | 0.947 (0.824-1.0) | 1.0 (1.0-1.0) | 0.973 (0.903-1.0) | 0.984 | -0.011 |
Conus granum | 74 | 0.986 (0.957-1.0) | 1.0 (1.0-1.0) | 0.993 (0.978-1.0) | 0.973 | 0.021 |
Conus guanche | 57 | 0.965 (0.912-1.0) | 0.948 (0.889-1.0) | 0.957 (0.914-0.991) | 0.948 | 0.009 |
Conus gubernator | 200 | 0.975 (0.953-0.995) | 0.985 (0.965-1.0) | 0.98 (0.965-0.992) | 0.973 | 0.007 |
Conus guinaicus | 108 | 0.907 (0.843-0.958) | 0.883 (0.82-0.941) | 0.895 (0.848-0.934) | 0.919 | -0.024 |
Conus harlandi | 15 | 1.0 (1.0-1.0) | 0.938 (0.789-1.0) | 0.968 (0.882-1.0) | 0.994 | -0.026 |
Conus hazinorum | 7 | 0.857 (0.5-1.0) | 1.0 (1.0-1.0) | 0.923 (0.667-1.0) | 0.963 | -0.04 |
Conus hieroglyphus | 20 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus hirasei | 58 | 0.983 (0.943-1.0) | 1.0 (1.0-1.0) | 0.991 (0.971-1.0) | 0.995 | -0.004 |
Conus hyaena | 21 | 1.0 (1.0-1.0) | 0.955 (0.846-1.0) | 0.977 (0.917-1.0) | 0.986 | -0.01 |
Conus immelmani | 7 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.986 | 0.014 |
Conus imperialis | 184 | 0.973 (0.945-0.994) | 1.0 (1.0-1.0) | 0.986 (0.972-0.997) | 0.98 | 0.006 |
Conus indomaris | 25 | 0.96 (0.869-1.0) | 0.96 (0.857-1.0) | 0.96 (0.894-1.0) | 0.984 | -0.024 |
Conus infinitus | 22 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.986 | 0.014 |
Conus infrenatus | 20 | 0.95 (0.833-1.0) | 1.0 (1.0-1.0) | 0.974 (0.909-1.0) | 0.97 | 0.004 |
Conus inscriptus | 76 | 0.895 (0.829-0.96) | 1.0 (1.0-1.0) | 0.944 (0.906-0.98) | 0.928 | 0.016 |
Conus iodostoma | 38 | 0.974 (0.914-1.0) | 1.0 (1.0-1.0) | 0.987 (0.955-1.0) | 0.992 | -0.006 |
Conus janus | 84 | 0.964 (0.92-1.0) | 1.0 (1.0-1.0) | 0.982 (0.958-1.0) | 0.977 | 0.004 |
Conus jickelii | 40 | 0.975 (0.919-1.0) | 0.951 (0.878-1.0) | 0.963 (0.918-1.0) | 0.975 | -0.012 |
Conus josephinae | 30 | 1.0 (1.0-1.0) | 0.909 (0.8-1.0) | 0.952 (0.889-1.0) | 0.955 | -0.002 |
Conus jucundus | 16 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.982 | 0.018 |
Conus judaeus | 11 | 1.0 (1.0-1.0) | 0.846 (0.625-1.0) | 0.917 (0.769-1.0) | 0.942 | -0.025 |
Conus julieandreae | 11 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.991 | 0.009 |
Conus julii | 15 | 1.0 (1.0-1.0) | 0.938 (0.786-1.0) | 0.968 (0.88-1.0) | 0.994 | -0.026 |
Conus kaiserae | 16 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus kermadecensis | 17 | 0.882 (0.688-1.0) | 1.0 (1.0-1.0) | 0.938 (0.815-1.0) | 0.947 | -0.01 |
Conus kinoshitai | 152 | 0.987 (0.967-1.0) | 0.974 (0.946-0.994) | 0.98 (0.962-0.994) | 0.978 | 0.003 |
Conus kintoki | 67 | 0.955 (0.908-1.0) | 0.97 (0.922-1.0) | 0.962 (0.93-0.992) | 0.97 | -0.008 |
Conus klemae | 47 | 1.0 (1.0-1.0) | 0.979 (0.927-1.0) | 0.989 (0.962-1.0) | 0.983 | 0.007 |
Conus koukae | 11 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.965 | 0.035 |
Conus krabiensis | 10 | 0.9 (0.667-1.0) | 0.818 (0.556-1.0) | 0.857 (0.667-1.0) | 0.952 | -0.095 |
Conus kulkulcan | 17 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.994 | 0.006 |
Conus kuroharai | 36 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus largilliertii | 13 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.962 | 0.038 |
Conus laterculatus | 34 | 0.882 (0.759-0.975) | 1.0 (1.0-1.0) | 0.938 (0.863-0.987) | 0.974 | -0.036 |
Conus lecourtorum | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus leehmani | 10 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.981 | 0.019 |
Conus legatus | 54 | 0.981 (0.938-1.0) | 1.0 (1.0-1.0) | 0.991 (0.968-1.0) | 0.99 | 0.001 |
Conus lemniscatus | 61 | 0.934 (0.868-0.985) | 1.0 (1.0-1.0) | 0.966 (0.929-0.992) | 0.927 | 0.039 |
Conus lenavati | 81 | 0.988 (0.958-1.0) | 0.941 (0.886-0.988) | 0.964 (0.929-0.989) | 0.963 | 0.001 |
Conus leobottonii | 29 | 1.0 (1.0-1.0) | 0.906 (0.794-1.0) | 0.951 (0.885-1.0) | 0.98 | -0.029 |
Conus leopardus | 64 | 1.0 (1.0-1.0) | 0.955 (0.903-1.0) | 0.977 (0.949-1.0) | 0.985 | -0.008 |
Conus lienardi | 51 | 0.961 (0.902-1.0) | 1.0 (1.0-1.0) | 0.98 (0.948-1.0) | 0.99 | -0.01 |
Conus limpusi | 36 | 0.972 (0.909-1.0) | 0.946 (0.862-1.0) | 0.959 (0.909-1.0) | 0.984 | -0.025 |
Conus lineopunctatus | 13 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.97 | 0.03 |
Conus lischkeanus | 51 | 0.941 (0.872-1.0) | 0.96 (0.898-1.0) | 0.95 (0.901-0.99) | 0.955 | -0.005 |
Conus litoglyphus | 100 | 0.94 (0.889-0.981) | 0.979 (0.943-1.0) | 0.959 (0.927-0.984) | 0.959 | 0.0 |
Conus litteratus | 157 | 0.994 (0.98-1.0) | 0.981 (0.957-1.0) | 0.987 (0.973-0.997) | 0.983 | 0.005 |
Conus lividus | 102 | 0.951 (0.908-0.99) | 0.951 (0.902-0.99) | 0.951 (0.914-0.979) | 0.955 | -0.004 |
Conus lizardensis | 21 | 1.0 (1.0-1.0) | 0.955 (0.842-1.0) | 0.977 (0.914-1.0) | 0.967 | 0.01 |
Conus locumtenens | 56 | 0.964 (0.907-1.0) | 0.982 (0.942-1.0) | 0.973 (0.94-1.0) | 0.982 | -0.009 |
Conus lohri | 17 | 0.882 (0.692-1.0) | 0.833 (0.625-1.0) | 0.857 (0.696-0.968) | 0.971 | -0.114 |
Conus longilineus | 47 | 0.915 (0.826-0.982) | 0.977 (0.927-1.0) | 0.945 (0.892-0.989) | 0.939 | 0.006 |
Conus luciae | 13 | 1.0 (1.0-1.0) | 0.929 (0.769-1.0) | 0.963 (0.869-1.0) | 0.986 | -0.023 |
Conus luteus | 10 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.98 | 0.02 |
Conus lynceus | 37 | 0.919 (0.818-1.0) | 0.971 (0.9-1.0) | 0.944 (0.882-0.987) | 0.968 | -0.023 |
Conus maculospira | 21 | 1.0 (1.0-1.0) | 0.955 (0.857-1.0) | 0.977 (0.923-1.0) | 0.919 | 0.057 |
Conus madagascariensis | 8 | 1.0 (1.0-1.0) | 0.727 (0.4-1.0) | 0.842 (0.571-1.0) | 0.941 | -0.099 |
Conus magellanicus | 27 | 1.0 (1.0-1.0) | 0.931 (0.823-1.0) | 0.964 (0.903-1.0) | 0.953 | 0.012 |
Conus magnificus | 57 | 1.0 (1.0-1.0) | 0.95 (0.887-1.0) | 0.974 (0.94-1.0) | 0.98 | -0.006 |
Conus magus | 200 | 0.825 (0.768-0.873) | 0.932 (0.893-0.97) | 0.875 (0.838-0.908) | 0.848 | 0.027 |
Conus maioensis | 49 | 0.959 (0.896-1.0) | 0.979 (0.927-1.0) | 0.969 (0.927-1.0) | 0.967 | 0.002 |
Conus malabaricus | 8 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.977 | 0.023 |
Conus malacanus | 64 | 0.953 (0.899-1.0) | 0.984 (0.942-1.0) | 0.968 (0.932-0.993) | 0.967 | 0.001 |
Conus maldivus | 55 | 0.945 (0.878-1.0) | 0.852 (0.754-0.93) | 0.897 (0.828-0.946) | 0.96 | -0.064 |
Conus mappa | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.917 | 0.083 |
Conus marchionatus | 80 | 0.988 (0.957-1.0) | 1.0 (1.0-1.0) | 0.994 (0.978-1.0) | 0.992 | 0.001 |
Conus marielae | 12 | 1.0 (1.0-1.0) | 0.923 (0.714-1.0) | 0.96 (0.833-1.0) | 0.976 | -0.016 |
Conus marimaris | 26 | 0.923 (0.806-1.0) | 1.0 (1.0-1.0) | 0.96 (0.893-1.0) | 0.954 | 0.006 |
Conus marmoreus | 43 | 1.0 (1.0-1.0) | 0.741 (0.635-0.857) | 0.851 (0.776-0.923) | 0.944 | -0.092 |
Conus martensi | 54 | 1.0 (1.0-1.0) | 0.947 (0.873-1.0) | 0.973 (0.932-1.0) | 0.97 | 0.003 |
Conus mascarenensis | 15 | 0.933 (0.778-1.0) | 1.0 (1.0-1.0) | 0.966 (0.875-1.0) | 0.948 | 0.017 |
Conus mcbridei | 8 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus medoci | 19 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus medvedevi | 5 | 0.8 (0.333-1.0) | 1.0 (1.0-1.0) | 0.889 (0.5-1.0) | 0.963 | -0.074 |
Conus melvilli | 60 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus mercator | 200 | 0.935 (0.896-0.966) | 1.0 (1.0-1.0) | 0.966 (0.945-0.983) | 0.957 | 0.01 |
Conus merletti | 37 | 0.973 (0.903-1.0) | 0.973 (0.906-1.0) | 0.973 (0.925-1.0) | 0.978 | -0.005 |
Conus micropunctatus | 26 | 0.923 (0.809-1.0) | 0.857 (0.7-0.971) | 0.889 (0.783-0.963) | 0.929 | -0.04 |
Conus miles | 98 | 1.0 (1.0-1.0) | 0.99 (0.967-1.0) | 0.995 (0.983-1.0) | 0.993 | 0.002 |
Conus miliaris | 74 | 0.986 (0.956-1.0) | 0.973 (0.932-1.0) | 0.98 (0.954-1.0) | 0.98 | -0.0 |
Conus milneedwardsi | 38 | 1.0 (1.0-1.0) | 0.974 (0.914-1.0) | 0.987 (0.955-1.0) | 0.992 | -0.005 |
Conus miniexcelsus | 11 | 0.909 (0.714-1.0) | 0.833 (0.583-1.0) | 0.87 (0.667-1.0) | 0.902 | -0.032 |
Conus minnamurra | 17 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus mitratus | 80 | 0.975 (0.936-1.0) | 0.987 (0.957-1.0) | 0.981 (0.955-1.0) | 0.992 | -0.011 |
Conus moluccensis | 86 | 0.942 (0.889-0.988) | 0.976 (0.937-1.0) | 0.959 (0.925-0.988) | 0.962 | -0.004 |
Conus monachus | 40 | 0.925 (0.826-1.0) | 0.949 (0.861-1.0) | 0.937 (0.871-0.987) | 0.958 | -0.021 |
Conus moncuri | 10 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus monicae | 21 | 0.952 (0.842-1.0) | 1.0 (1.0-1.0) | 0.976 (0.914-1.0) | 0.969 | 0.007 |
Conus monile | 200 | 0.895 (0.853-0.937) | 0.994 (0.983-1.0) | 0.942 (0.917-0.965) | 0.925 | 0.017 |
Conus moreleti | 27 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.989 | 0.011 |
Conus mozambicus | 45 | 0.933 (0.854-1.0) | 0.977 (0.919-1.0) | 0.955 (0.903-0.99) | 0.96 | -0.005 |
Conus mucronatus | 47 | 0.957 (0.892-1.0) | 0.978 (0.921-1.0) | 0.968 (0.919-1.0) | 0.973 | -0.005 |
Conus muriculatus | 63 | 0.825 (0.722-0.911) | 0.929 (0.852-0.984) | 0.874 (0.803-0.931) | 0.918 | -0.044 |
Conus mus | 38 | 0.921 (0.818-1.0) | 1.0 (1.0-1.0) | 0.959 (0.9-1.0) | 0.976 | -0.017 |
Conus musicus | 97 | 0.959 (0.915-0.991) | 0.979 (0.947-1.0) | 0.969 (0.94-0.99) | 0.967 | 0.002 |
Conus mustelinus | 157 | 0.994 (0.979-1.0) | 0.981 (0.958-1.0) | 0.987 (0.974-0.997) | 0.99 | -0.003 |
Conus namocanus | 55 | 0.945 (0.882-1.0) | 0.897 (0.811-0.971) | 0.92 (0.863-0.967) | 0.937 | -0.017 |
Conus nanus | 33 | 1.0 (1.0-1.0) | 0.971 (0.895-1.0) | 0.985 (0.944-1.0) | 0.979 | 0.006 |
Conus naranjus | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus natalis | 52 | 0.981 (0.933-1.0) | 0.981 (0.936-1.0) | 0.981 (0.95-1.0) | 0.965 | 0.016 |
Conus navarroi | 12 | 0.917 (0.727-1.0) | 0.733 (0.5-0.933) | 0.815 (0.615-0.952) | 0.874 | -0.059 |
Conus neocostatus | 6 | 0.833 (0.454-1.0) | 1.0 (1.0-1.0) | 0.909 (0.625-1.0) | 0.848 | 0.061 |
Conus neptunus | 91 | 0.989 (0.964-1.0) | 0.968 (0.93-1.0) | 0.978 (0.956-0.995) | 0.978 | 0.001 |
Conus niederhoeferi | 9 | 0.889 (0.625-1.0) | 0.889 (0.667-1.0) | 0.889 (0.667-1.0) | 0.978 | -0.089 |
Conus nielsenae | 21 | 0.952 (0.846-1.0) | 0.69 (0.516-0.857) | 0.8 (0.655-0.906) | 0.912 | -0.112 |
Conus nigropunctatus | 25 | 0.96 (0.869-1.0) | 0.75 (0.586-0.893) | 0.842 (0.727-0.931) | 0.9 | -0.058 |
Conus nimbosus | 41 | 1.0 (1.0-1.0) | 0.976 (0.921-1.0) | 0.988 (0.959-1.0) | 0.998 | -0.01 |
Conus nobilis | 41 | 0.927 (0.833-1.0) | 0.95 (0.868-1.0) | 0.938 (0.873-0.987) | 0.967 | -0.028 |
Conus nobrei | 8 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus nocturnus | 20 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.99 | 0.01 |
Conus nodulosus | 8 | 1.0 (1.0-1.0) | 0.8 (0.499-1.0) | 0.889 (0.666-1.0) | 0.978 | -0.089 |
Conus norai | 10 | 1.0 (1.0-1.0) | 0.667 (0.416-0.917) | 0.8 (0.588-0.957) | 0.901 | -0.101 |
Conus nucleus | 12 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.954 | 0.046 |
Conus nussatella | 114 | 0.982 (0.953-1.0) | 1.0 (1.0-1.0) | 0.991 (0.976-1.0) | 0.987 | 0.004 |
Conus nux | 56 | 0.982 (0.94-1.0) | 0.965 (0.918-1.0) | 0.973 (0.941-1.0) | 0.98 | -0.006 |
Conus obscurus | 69 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus ochroleucus | 34 | 0.941 (0.857-1.0) | 0.97 (0.902-1.0) | 0.955 (0.9-1.0) | 0.971 | -0.016 |
Conus oishii | 73 | 0.986 (0.957-1.0) | 1.0 (1.0-1.0) | 0.993 (0.978-1.0) | 0.993 | 0.001 |
Conus omaria | 200 | 0.975 (0.952-0.995) | 0.956 (0.926-0.981) | 0.965 (0.947-0.982) | 0.965 | 0.0 |
Conus orion | 16 | 0.938 (0.789-1.0) | 1.0 (1.0-1.0) | 0.968 (0.882-1.0) | 0.982 | -0.015 |
Conus papilliferus | 25 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.976 | 0.024 |
Conus parius | 24 | 1.0 (1.0-1.0) | 0.96 (0.87-1.0) | 0.98 (0.93-1.0) | 0.988 | -0.008 |
Conus parvatus | 42 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.987 | 0.013 |
Conus patae | 12 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus patricius | 41 | 0.976 (0.921-1.0) | 1.0 (1.0-1.0) | 0.988 (0.959-1.0) | 0.995 | -0.007 |
Conus paulae | 8 | 1.0 (1.0-1.0) | 0.889 (0.6-1.0) | 0.941 (0.75-1.0) | 0.953 | -0.012 |
Conus pauperculus | 6 | 1.0 (1.0-1.0) | 0.857 (0.5-1.0) | 0.923 (0.667-1.0) | 0.985 | -0.062 |
Conus peasei | 9 | 1.0 (1.0-1.0) | 0.9 (0.667-1.0) | 0.947 (0.8-1.0) | 0.961 | -0.013 |
Conus peli | 5 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.984 | 0.016 |
Conus penchaszadehi | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.989 | 0.011 |
Conus pennaceus | 200 | 0.785 (0.727-0.842) | 0.952 (0.917-0.982) | 0.86 (0.821-0.897) | 0.844 | 0.016 |
Conus pergrandis | 50 | 1.0 (1.0-1.0) | 0.98 (0.937-1.0) | 0.99 (0.968-1.0) | 0.985 | 0.005 |
Conus perrineae | 16 | 1.0 (1.0-1.0) | 0.889 (0.722-1.0) | 0.941 (0.839-1.0) | 0.94 | 0.001 |
Conus pertusus | 186 | 0.995 (0.983-1.0) | 0.995 (0.982-1.0) | 0.995 (0.986-1.0) | 0.993 | 0.002 |
Conus petergabrieli | 7 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.973 | 0.027 |
Conus petestimpsoni | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.923 | 0.077 |
Conus pica | 96 | 0.948 (0.897-0.989) | 1.0 (1.0-1.0) | 0.973 (0.946-0.995) | 0.965 | 0.008 |
Conus pictus | 26 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.989 | 0.011 |
Conus planorbis | 180 | 0.817 (0.759-0.874) | 0.902 (0.851-0.945) | 0.857 (0.817-0.894) | 0.824 | 0.033 |
Conus plinthis | 22 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus polongimarumai | 7 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus pongo | 12 | 0.917 (0.727-1.0) | 1.0 (1.0-1.0) | 0.957 (0.842-1.0) | 0.968 | -0.012 |
Conus poormani | 28 | 0.964 (0.88-1.0) | 0.931 (0.815-1.0) | 0.947 (0.875-1.0) | 0.955 | -0.007 |
Conus praecellens | 116 | 0.974 (0.94-1.0) | 0.983 (0.954-1.0) | 0.978 (0.958-0.995) | 0.962 | 0.016 |
Conus praelatus | 35 | 0.971 (0.909-1.0) | 0.829 (0.705-0.941) | 0.895 (0.806-0.963) | 0.975 | -0.08 |
Conus pretiosus | 47 | 1.0 (1.0-1.0) | 0.979 (0.933-1.0) | 0.989 (0.966-1.0) | 0.993 | -0.003 |
Conus princeps | 110 | 0.945 (0.897-0.982) | 0.963 (0.925-0.992) | 0.954 (0.922-0.979) | 0.955 | -0.001 |
Conus proximus | 67 | 0.821 (0.726-0.904) | 0.902 (0.814-0.969) | 0.859 (0.793-0.919) | 0.895 | -0.035 |
Conus pseudimperialis | 15 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus pseudocardinalis | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus pseudocedonulli | 8 | 1.0 (1.0-1.0) | 0.8 (0.5-1.0) | 0.889 (0.667-1.0) | 0.977 | -0.088 |
Conus pseudonivifer | 62 | 0.984 (0.943-1.0) | 0.953 (0.893-1.0) | 0.968 (0.929-0.992) | 0.957 | 0.012 |
Conus pulcher | 57 | 0.912 (0.829-0.98) | 0.912 (0.827-0.98) | 0.912 (0.85-0.962) | 0.935 | -0.023 |
Conus pulicarius | 158 | 0.987 (0.969-1.0) | 0.981 (0.957-1.0) | 0.984 (0.969-0.997) | 0.972 | 0.012 |
Conus purpurascens | 61 | 1.0 (1.0-1.0) | 0.924 (0.851-0.982) | 0.961 (0.919-0.991) | 0.973 | -0.012 |
Conus purus | 35 | 0.943 (0.842-1.0) | 0.917 (0.81-1.0) | 0.93 (0.852-0.984) | 0.972 | -0.042 |
Conus queenslandis | 19 | 1.0 (1.0-1.0) | 0.905 (0.75-1.0) | 0.95 (0.857-1.0) | 0.959 | -0.009 |
Conus quercinus | 124 | 0.968 (0.932-0.992) | 0.952 (0.912-0.985) | 0.96 (0.934-0.981) | 0.975 | -0.015 |
Conus radiatus | 84 | 0.964 (0.924-1.0) | 0.988 (0.961-1.0) | 0.976 (0.952-0.995) | 0.975 | 0.001 |
Conus ranonganus | 30 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus rattus | 88 | 0.932 (0.869-0.98) | 1.0 (1.0-1.0) | 0.965 (0.93-0.99) | 0.969 | -0.005 |
Conus raulsilvai | 11 | 1.0 (1.0-1.0) | 0.917 (0.714-1.0) | 0.957 (0.833-1.0) | 0.948 | 0.008 |
Conus rawaiensis | 9 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus recluzianus | 26 | 1.0 (1.0-1.0) | 0.684 (0.542-0.828) | 0.812 (0.703-0.906) | 0.894 | -0.082 |
Conus recurvus | 26 | 0.846 (0.7-0.969) | 0.815 (0.654-0.945) | 0.83 (0.706-0.927) | 0.929 | -0.099 |
Conus reductaspiralis | 51 | 0.941 (0.868-1.0) | 0.98 (0.936-1.0) | 0.96 (0.914-1.0) | 0.978 | -0.018 |
Conus regius | 90 | 0.922 (0.861-0.974) | 0.976 (0.94-1.0) | 0.949 (0.912-0.98) | 0.927 | 0.021 |
Conus regonae | 13 | 1.0 (1.0-1.0) | 0.929 (0.769-1.0) | 0.963 (0.869-1.0) | 0.993 | -0.03 |
Conus regularis | 49 | 0.939 (0.864-1.0) | 0.939 (0.861-1.0) | 0.939 (0.884-0.982) | 0.972 | -0.034 |
Conus reticulatus | 17 | 1.0 (1.0-1.0) | 0.85 (0.684-1.0) | 0.919 (0.812-1.0) | 0.984 | -0.065 |
Conus retifer | 37 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus richardsae | 7 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus richeri | 21 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus riosi | 15 | 0.867 (0.647-1.0) | 0.929 (0.733-1.0) | 0.897 (0.733-1.0) | 0.943 | -0.046 |
Conus rizali | 28 | 0.929 (0.815-1.0) | 0.897 (0.769-1.0) | 0.912 (0.818-0.98) | 0.947 | -0.035 |
Conus robini | 72 | 0.986 (0.952-1.0) | 0.973 (0.931-1.0) | 0.979 (0.952-1.0) | 0.983 | -0.003 |
Conus roeckeli | 20 | 0.9 (0.75-1.0) | 0.857 (0.684-1.0) | 0.878 (0.757-0.971) | 0.925 | -0.047 |
Conus rolani | 65 | 0.969 (0.923-1.0) | 0.969 (0.922-1.0) | 0.969 (0.933-1.0) | 0.968 | 0.002 |
Conus roseorapum | 25 | 0.92 (0.8-1.0) | 1.0 (1.0-1.0) | 0.958 (0.889-1.0) | 0.956 | 0.002 |
Conus rosiae | 16 | 0.938 (0.8-1.0) | 1.0 (1.0-1.0) | 0.968 (0.889-1.0) | 0.943 | 0.025 |
Conus royaikeni | 37 | 1.0 (1.0-1.0) | 0.974 (0.912-1.0) | 0.987 (0.954-1.0) | 0.968 | 0.018 |
Conus rufimaculosus | 36 | 1.0 (1.0-1.0) | 0.973 (0.912-1.0) | 0.986 (0.954-1.0) | 0.997 | -0.011 |
Conus samiae | 46 | 0.935 (0.857-1.0) | 0.935 (0.853-1.0) | 0.935 (0.873-0.981) | 0.96 | -0.025 |
Conus sandwichensis | 9 | 0.889 (0.667-1.0) | 0.889 (0.6-1.0) | 0.889 (0.667-1.0) | 0.96 | -0.071 |
Conus sanguinolentus | 8 | 1.0 (1.0-1.0) | 0.727 (0.428-1.0) | 0.842 (0.6-1.0) | 0.889 | -0.047 |
Conus santinii | 28 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus saragasae | 10 | 1.0 (1.0-1.0) | 0.909 (0.7-1.0) | 0.952 (0.824-1.0) | 0.971 | -0.019 |
Conus scabriusculus | 21 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.968 | 0.032 |
Conus scalaris | 17 | 1.0 (1.0-1.0) | 0.944 (0.81-1.0) | 0.971 (0.895-1.0) | 0.936 | 0.036 |
Conus scalarissimus | 21 | 0.952 (0.842-1.0) | 1.0 (1.0-1.0) | 0.976 (0.914-1.0) | 0.959 | 0.017 |
Conus scottjordani | 22 | 0.909 (0.765-1.0) | 1.0 (1.0-1.0) | 0.952 (0.867-1.0) | 0.978 | -0.025 |
Conus sculletti | 50 | 0.98 (0.933-1.0) | 0.98 (0.935-1.0) | 0.98 (0.948-1.0) | 0.987 | -0.007 |
Conus sertacinctus | 24 | 0.958 (0.857-1.0) | 0.958 (0.864-1.0) | 0.958 (0.889-1.0) | 0.951 | 0.008 |
Conus shikamai | 20 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus sogodensis | 9 | 1.0 (1.0-1.0) | 0.818 (0.556-1.0) | 0.9 (0.714-1.0) | 0.96 | -0.06 |
Conus solangeae | 52 | 1.0 (1.0-1.0) | 0.981 (0.94-1.0) | 0.99 (0.969-1.0) | 0.988 | 0.003 |
Conus solomonensis | 16 | 0.938 (0.8-1.0) | 0.652 (0.45-0.85) | 0.769 (0.606-0.9) | 0.892 | -0.123 |
Conus spectrum | 77 | 0.948 (0.892-0.988) | 0.986 (0.953-1.0) | 0.967 (0.931-0.993) | 0.945 | 0.022 |
Conus spiceri | 4 | 1.0 (1.0-1.0) | 0.8 (0.25-1.0) | 0.889 (0.4-1.0) | 0.96 | -0.071 |
Conus splendidulus | 15 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus sponsalis | 87 | 0.989 (0.963-1.0) | 0.977 (0.943-1.0) | 0.983 (0.962-1.0) | 0.98 | 0.003 |
Conus spurius | 24 | 0.958 (0.864-1.0) | 0.92 (0.8-1.0) | 0.939 (0.863-1.0) | 0.956 | -0.017 |
Conus stainforthii | 21 | 1.0 (1.0-1.0) | 0.913 (0.778-1.0) | 0.955 (0.875-1.0) | 0.973 | -0.019 |
Conus stercusmuscarum | 56 | 0.982 (0.94-1.0) | 0.965 (0.909-1.0) | 0.973 (0.938-1.0) | 0.993 | -0.019 |
Conus stimpsoni | 42 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus stramineus | 20 | 0.95 (0.818-1.0) | 1.0 (1.0-1.0) | 0.974 (0.9-1.0) | 0.913 | 0.061 |
Conus striatellus | 114 | 0.895 (0.839-0.948) | 0.872 (0.808-0.932) | 0.883 (0.835-0.925) | 0.91 | -0.027 |
Conus striatus | 200 | 0.965 (0.935-0.986) | 0.975 (0.953-0.995) | 0.97 (0.953-0.985) | 0.967 | 0.002 |
Conus striolatus | 39 | 0.923 (0.829-1.0) | 0.9 (0.808-0.977) | 0.911 (0.833-0.969) | 0.952 | -0.041 |
Conus stupa | 12 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus stupella | 21 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus suduirauti | 14 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.993 | 0.007 |
Conus sugillatus | 28 | 0.893 (0.773-1.0) | 0.862 (0.727-0.968) | 0.877 (0.775-0.958) | 0.954 | -0.077 |
Conus sugimotonis | 49 | 0.959 (0.896-1.0) | 0.959 (0.892-1.0) | 0.959 (0.911-0.991) | 0.962 | -0.002 |
Conus sukhadwalai | 6 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.986 | 0.014 |
Conus sulcatus | 45 | 0.867 (0.759-0.956) | 0.951 (0.872-1.0) | 0.907 (0.833-0.965) | 0.905 | 0.002 |
Conus sulcocastaneus | 89 | 0.978 (0.943-1.0) | 0.989 (0.96-1.0) | 0.983 (0.96-1.0) | 0.987 | -0.004 |
Conus suratensis | 96 | 1.0 (1.0-1.0) | 0.99 (0.966-1.0) | 0.995 (0.983-1.0) | 0.998 | -0.003 |
Conus suturatus | 23 | 0.913 (0.762-1.0) | 0.875 (0.714-1.0) | 0.894 (0.774-0.978) | 0.962 | -0.069 |
Conus swainsoni | 20 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.985 | 0.015 |
Conus sydneyensis | 10 | 1.0 (1.0-1.0) | 0.833 (0.6-1.0) | 0.909 (0.75-1.0) | 0.943 | -0.034 |
Conus tabidus | 27 | 0.926 (0.8-1.0) | 0.926 (0.808-1.0) | 0.926 (0.839-0.985) | 0.957 | -0.031 |
Conus tacomae | 21 | 0.952 (0.846-1.0) | 1.0 (1.0-1.0) | 0.976 (0.917-1.0) | 0.986 | -0.01 |
Conus taeniatus | 36 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus tagaroae | 30 | 1.0 (1.0-1.0) | 0.938 (0.844-1.0) | 0.968 (0.915-1.0) | 0.965 | 0.002 |
Conus taitensis | 7 | 0.857 (0.5-1.0) | 0.857 (0.5-1.0) | 0.857 (0.571-1.0) | 0.949 | -0.092 |
Conus takahashii | 23 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.996 | 0.004 |
Conus telatus | 21 | 0.952 (0.84-1.0) | 0.87 (0.7-1.0) | 0.909 (0.8-0.98) | 0.905 | 0.004 |
Conus tenuistriatus | 20 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.955 | 0.045 |
Conus terebra | 106 | 0.972 (0.934-1.0) | 0.981 (0.951-1.0) | 0.976 (0.954-0.995) | 0.977 | -0.001 |
Conus tessulatus | 200 | 0.98 (0.961-0.995) | 0.98 (0.958-0.995) | 0.98 (0.966-0.992) | 0.963 | 0.017 |
Conus textile | 200 | 0.695 (0.627-0.759) | 0.959 (0.924-0.987) | 0.806 (0.757-0.848) | 0.801 | 0.005 |
Conus thailandis | 21 | 1.0 (1.0-1.0) | 0.913 (0.786-1.0) | 0.955 (0.88-1.0) | 0.972 | -0.017 |
Conus thalassiarchus | 200 | 0.975 (0.952-0.995) | 1.0 (1.0-1.0) | 0.987 (0.975-0.997) | 0.982 | 0.005 |
Conus therriaulti | 8 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.963 | 0.037 |
Conus thomae | 40 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus tiaratus | 14 | 1.0 (1.0-1.0) | 0.824 (0.631-1.0) | 0.903 (0.774-1.0) | 0.973 | -0.07 |
Conus timorensis | 16 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.994 | 0.006 |
Conus tinianus | 73 | 1.0 (1.0-1.0) | 0.924 (0.859-0.976) | 0.961 (0.924-0.988) | 0.96 | 0.0 |
Conus tostesi | 12 | 1.0 (1.0-1.0) | 0.8 (0.562-1.0) | 0.889 (0.72-1.0) | 0.919 | -0.03 |
Conus transkeiensis | 14 | 1.0 (1.0-1.0) | 0.933 (0.769-1.0) | 0.966 (0.869-1.0) | 0.993 | -0.028 |
Conus tribblei | 139 | 0.957 (0.919-0.985) | 1.0 (1.0-1.0) | 0.978 (0.958-0.993) | 0.967 | 0.011 |
Conus trigonus | 20 | 1.0 (1.0-1.0) | 0.952 (0.846-1.0) | 0.976 (0.917-1.0) | 0.971 | 0.005 |
Conus trinitarius | 8 | 1.0 (1.0-1.0) | 0.889 (0.636-1.0) | 0.941 (0.778-1.0) | 0.921 | 0.02 |
Conus tristensis | 15 | 0.8 (0.571-1.0) | 1.0 (1.0-1.0) | 0.889 (0.727-1.0) | 0.968 | -0.079 |
Conus trochulus | 56 | 0.982 (0.94-1.0) | 0.887 (0.803-0.962) | 0.932 (0.878-0.976) | 0.968 | -0.036 |
Conus tulipa | 90 | 1.0 (1.0-1.0) | 0.989 (0.96-1.0) | 0.994 (0.98-1.0) | 0.993 | 0.002 |
Conus turritinus | 7 | 0.714 (0.25-1.0) | 0.5 (0.166-0.818) | 0.588 (0.182-0.833) | 0.886 | -0.298 |
Conus typhon | 30 | 0.9 (0.783-1.0) | 0.964 (0.875-1.0) | 0.931 (0.853-0.987) | 0.974 | -0.043 |
Conus unifasciatus | 28 | 1.0 (1.0-1.0) | 0.903 (0.792-1.0) | 0.949 (0.884-1.0) | 0.975 | -0.026 |
Conus urashimanus | 7 | 0.857 (0.5-1.0) | 0.667 (0.333-1.0) | 0.75 (0.444-0.947) | 0.894 | -0.144 |
Conus vanvilstereni | 8 | 0.75 (0.375-1.0) | 1.0 (1.0-1.0) | 0.857 (0.545-1.0) | 0.964 | -0.107 |
Conus variegatus | 24 | 0.917 (0.792-1.0) | 0.957 (0.857-1.0) | 0.936 (0.85-1.0) | 0.968 | -0.032 |
Conus varius | 103 | 1.0 (1.0-1.0) | 0.99 (0.969-1.0) | 0.995 (0.984-1.0) | 0.998 | -0.002 |
Conus vautieri | 29 | 0.966 (0.885-1.0) | 0.933 (0.828-1.0) | 0.949 (0.878-1.0) | 0.96 | -0.011 |
Conus ventricosus | 73 | 0.89 (0.818-0.955) | 0.956 (0.902-1.0) | 0.922 (0.875-0.961) | 0.922 | 0.0 |
Conus venulatus | 89 | 0.955 (0.909-0.99) | 0.904 (0.838-0.961) | 0.929 (0.886-0.963) | 0.941 | -0.012 |
Conus verdensis | 17 | 0.941 (0.8-1.0) | 1.0 (1.0-1.0) | 0.97 (0.889-1.0) | 0.977 | -0.008 |
Conus vexillum | 200 | 0.915 (0.877-0.953) | 0.989 (0.972-1.0) | 0.951 (0.929-0.972) | 0.943 | 0.007 |
Conus vezoi | 41 | 0.976 (0.917-1.0) | 0.976 (0.921-1.0) | 0.976 (0.936-1.0) | 0.99 | -0.014 |
Conus vezzaroi | 10 | 1.0 (1.0-1.0) | 0.588 (0.347-0.833) | 0.741 (0.516-0.909) | 0.924 | -0.184 |
Conus victor | 5 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus victoriae | 157 | 0.981 (0.957-1.0) | 0.981 (0.957-1.0) | 0.981 (0.964-0.994) | 0.97 | 0.011 |
Conus vicweei | 26 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus vidua | 71 | 0.986 (0.953-1.0) | 0.909 (0.838-0.969) | 0.946 (0.904-0.981) | 0.955 | -0.009 |
Conus villepinii | 32 | 0.875 (0.759-0.974) | 0.966 (0.889-1.0) | 0.918 (0.836-0.981) | 0.945 | -0.027 |
Conus viola | 73 | 0.973 (0.933-1.0) | 0.973 (0.928-1.0) | 0.973 (0.944-0.994) | 0.952 | 0.021 |
Conus violaceus | 6 | 1.0 (1.0-1.0) | 0.857 (0.5-1.0) | 0.923 (0.667-1.0) | 0.938 | -0.014 |
Conus virgatus | 60 | 0.983 (0.943-1.0) | 0.967 (0.909-1.0) | 0.975 (0.942-1.0) | 0.977 | -0.002 |
Conus virgo | 104 | 0.981 (0.949-1.0) | 0.962 (0.925-0.991) | 0.971 (0.949-0.99) | 0.951 | 0.021 |
Conus visagenus | 13 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |
Conus vittatus | 51 | 0.922 (0.833-0.982) | 1.0 (1.0-1.0) | 0.959 (0.909-0.991) | 0.982 | -0.023 |
Conus vitulinus | 64 | 0.875 (0.786-0.949) | 0.7 (0.6-0.8) | 0.778 (0.695-0.847) | 0.881 | -0.104 |
Conus voluminalis | 191 | 0.948 (0.914-0.977) | 0.978 (0.955-0.995) | 0.963 (0.941-0.981) | 0.957 | 0.006 |
Conus vulcanus | 19 | 0.947 (0.833-1.0) | 0.857 (0.687-1.0) | 0.9 (0.788-0.978) | 0.954 | -0.054 |
Conus wallangra | 19 | 1.0 (1.0-1.0) | 0.95 (0.812-1.0) | 0.974 (0.897-1.0) | 0.985 | -0.011 |
Conus wittigi | 24 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus xanthocinctus | 20 | 1.0 (1.0-1.0) | 0.952 (0.857-1.0) | 0.976 (0.923-1.0) | 0.957 | 0.019 |
Conus zandbergeni | 29 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.983 | 0.017 |
Conus zapatosensis | 23 | 0.957 (0.852-1.0) | 0.917 (0.792-1.0) | 0.936 (0.847-1.0) | 0.958 | -0.022 |
Conus zebra | 23 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.966 | 0.034 |
Conus zebroides | 20 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.995 | 0.005 |
Conus zeylanicus | 49 | 1.0 (1.0-1.0) | 0.961 (0.891-1.0) | 0.98 (0.942-1.0) | 0.99 | -0.01 |
Conus ziczac | 11 | 1.0 (1.0-1.0) | 0.917 (0.714-1.0) | 0.957 (0.833-1.0) | 0.957 | -0.001 |
Conus zonatus | 35 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 0.992 | 0.008 |
Conus zylmanae | 26 | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 (1.0-1.0) | 1.0 | 0.0 |