Shell Identification

Upload an image and identify the taxon of the shell

A Large-Scale Convolutional Neural Network for Fine-Grained Conus Shell Identification

Published on: 17 March 2025

Abstract

Cone snails (genus Conus) comprise one of the most diverse groups of marine gastropods, with over 850 recognized species. Despite significant variability in coloration and subtle morphological traits, Conus shells often appear similar in overall shape, making their accurate identification a fine-grained image classification challenge. In this study, we present a convolutional neural network (CNN) model trained on a large dataset of 130,373 images spanning 518 Conus species. Images were gathered from multiple sources and extensively curated to address issues of inconsistent labeling and background noise. Preprocessing steps included segmentation of individual shells, uniform background replacement, and resizing, thereby standardizing visual inputs for the model.
Performance metrics (recall, precision, F1 score) show strong results, with an overall accuracy of 97% and macro-averaged precision and recall around 96–97%. Confidence intervals further support the reliability of these findings, even for classes with fewer validation images. We compare our approach with two previous Conus models: one developed at Naturalis Biodiversity Center and another by Qasmi et al., each employing different image-processing and classification strategies. Our results underscore that large-scale species coverage—when coupled with thorough preprocessing—does not necessarily diminish model accuracy. Furthermore, the model’s solid performance amid considerable species-level imbalances highlights the viability of CNN-based systems for difficult, fine-grained biodiversity classification tasks. This comprehensive dataset and refined workflow pave the way for future integrative studies that combine museum collections, citizen science, and advanced AI methodologies to enhance Conus taxonomy and broader molluscan research.

Introduction

The genus Conus (commonly known as cone snails) represents one of the most diverse groups of marine gastropods, with a current total of 853 recognized extant species according to MolluscaBase and WoRMS (WoRMS, MolluscaBase). The Conus genus is one of the largest in the Mollusca phylum. Until a decade ago, its species were split across 89 genera [1], but are now largely consolidated within Conus genus (WoRMS, MolluscaBase). Despite this tremendous species richness, cone snails exhibit a notable uniformity in general shell shape and pattern, which can differ only by subtle color variations, banding, or small morphological traits. As a result, discriminating among the many Conus species becomes a daunting fine-grained image classification challenge, demanding models that can isolate and interpret minute differences in shell markings.
A Conus CNN model is designed to learn features that capture these nuances, allowing it to separate species based on visual cues in shell images. However, the complexity of this task escalates with the number of species (i.e., classes) included: each new class introduces additional inter-class similarities and increases the potential for misclassification [2]. Moreover, adding classes means collecting and processing more images, thus necessitating greater computational resources and longer training times. For all Conus species together we have a dataset of 130 373 images. Consequently, scaling a Conus CNN model to encompass all 853 species underscores both the difficulty of fine-grained recognition and the importance of robust, efficient training strategies.

The shells of the Conus genus have a characteristic morphology, the most important features for species identification are pattern and colouration. Other important features are the form of the spire and the width versus the length.

Table I. The Conus genus and the image dataset.

Parameter Value Comments
Species in the Conus genus 853 MolluscaBase/WoRMS accessed Jan 2025
Species with images 529 Status Jan. 2025
Species with 25 images or more 518 Status Jan. 2025. 11 species have less than 25 images and were excluded.
Total number of images in the dataset 130 373 Status Jan. 2025
Species with the most images Conus textile, 2923 images

Methods

Data Collection

The dataset for the Conus CNN model comprises 130,373 shell images representing 518 Conus species (see table I). From the 529 species for which images were collected, all species with less than 25 images were removed (see Minimum number of images needed for each species). A total of 518 species were used. These images were aggregated from multiple sources, including online databases and museum or field photograph repositories (Identifying Shells using Convolutional Neural Networks: Data Collection and Model Selection). Additionally, broad community-driven efforts (e.g. citizen science platforms) have contributed to the pool of images – modern biodiversity projects have amassed massive image collections of specimens. The dataset comprises images from the following sources: museum collections (4.3%, 5640 images), online citizen science platforms (18.1%, 23661 images) and commercial shell websites (77.6%, 101071 images). The original Conus image dataset is 12% larger, many images were removed because the image quality is bad, or other objects are visible in the picture (hands, other animals, labels, etc.). Also images that contains more than one shell and could not be split in images with only 1 shells were eliminated.

Hardware

For training a HP Omen 30L GT13 is used. It contains a Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz 3.50 GHz processor, with 64GB RAM, Nvidia GeForce RTX 3080 10GB.

Image preparation

All images were pre-processed. If more than 1 shell was visible on the picture, several images were generated, 1 image for each shell. The background was replaced with a uniform black background. A square image was made by padding the black background. All shells were resized (400 x 400 px). A last visual selection was made before producing the final image dataset. Overall, 10-20% of the images were removed for various reasons (when other objects were visible in the picture such hands, habitat, text, etc.).

Annotation and Labeling Challenges

Preparing a labeled dataset of 518 species presents significant annotation hurdles. One major challenge is taxonomic ambiguity. Cone snail taxonomy has been in flux – historically cone snails were split in 89 genera [1], but the last decade most species were merged in the genus Conus (see MolluscaBase/WoRMS). As a result, the same species might be known by multiple names, or what were once separate species might have been merged. Such inconsistencies across image sources can lead to mislabeling (e.g., an image labeled with an outdated name). Careful curation was needed to reconcile synonyms and ensure each image is tagged with a valid, accepted species name.

Another challenge is the morphological similarity among species: many Conus shells differ only in subtle pattern or color variations. Non-experts may confuse one species for another, especially if shell patterns overlap or the specimen is an atypical individual. This means some portion of the images could be erroneously labeled, introducing noise into the training data.

Metrics and confidence intervals

Metrics were calculated using the sklearn.metrics module, functions accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report were used. To calculate the confidence intervals (95%). A maximum of 200 images were used to calculate the metrics and confidence intervals. Bootstrapping was used [4]. Bootstrapping, being a non-parametric method, does not rely on the normality assumption. A 1000 runs were performed for each species to calculate the intervals.

Results

The Conus image dataset

From these 529 species for which images are available, 518 have more than 25 images which are used to construct a model (see Minimum number of images needed for each species). These 518 species and the number of images used are listed in Table II. The distribution of images among species is shown in the next figure.

Many species have a low number of images. The first bin (25-170 images) has 293 species which is almost half of all species. There are a few species with a large amount of images; Conus textile has 2923 images, Conus furvus 1976 images and Conus mercator 1703 images. There is a considerable imbalance in the dataset. However, preliminary tests with oversampling the minority classes with augmented images (rotate, flip, change brightness and contrast) does not improve the results significantly (data not shown).

Image Preparation

The dataset of 130,373 images were split into 80% training and 20% testing data. This means that the species with the least images (total of 25 images) has 20 images in the training dataset. There will be more than 20 images if the original image shows several shells (or views of the same shell) because separate images were made for each shell in the original images.

Model creation

The Conus model was created as described in Identifying Shells using Convolutional Neural Networks: Data Collection and Model Selection. The hyperparameters used are provided in table III.

Table III. Hyperparameters

Hyperparameter Value Comments
Batch Size 64 The batch size determines the number of samples processed in each iteration.
Epochs 100 The number of epochs determines how many times the entire training dataset is passed through the model. Because early-stopping is used, less than 100 epochs were needed. Fine-tuning usually requires fewer epochs compared to training from scratch.
Optimizer Adam The optimizer determines the algorithm used to update model weights during training.
Learning rate 0.0002
Fine-tuning top 3 layers unfreezed
Top layer dropout 0.25
Regularization 0.0001

Some limited parameter tuning was performed, however the initial hyperparameters gave already good results (data not shown). The learning rate was decreased from initial 0.0005 to 0.0002, and the top layer dropout increased from 0.2 to 0.25 (see also Identifying Shells using Convolutional Neural Networks: Data Collection and Model Selection). This limited hyperparameter tuning was done iteratively. The final training was run for 73 epochs using early stopping. Inference was performed on the validation set and analyzed using sklearn.metrics, classification_report. The summary statistics are provided in table IV.

Table IV. Summary statistics using sklearn.metrics

Statistic Value
Categorical Accuracy 0.97
Macro Average Recall 0.96
Macro Average Precision 0.97
Macro Average F1 0.96
Weighted Average Recall 0.97
Weighted Average Precision 0.97
Weighted Average F1 0.97
Because a low number of validation images were used to calculate the metrics for a significant proportion of the species (180 species have less than 20 validation images), the confidence intervals were calculated for the F1 Score using bootstrapping. The metrics and confidence intervals are given in table V. Only 6 species have low metrics (and large confidence intervals): Conus adenensis 0.540 (CI: 0.193-0.645), Conus auricomus 0.652 (CI: 0.476-0.792), Conus compressus 0.696 (CI: 0.428-0.880), Conus conspersus 0.640 (CI: 0.363-0.827), Conus gilvus 0.666 (CI: 0.399-0.864), Conus turritinus 0.588 (CI: 0.200-0.823), and Conus vezzaroi 0.741 (CI: 0.500-0.903). The figure below show the distribution of the F1 Score for the validation set.
The figure below shows a scatterplot where the number of images in the validation set is plotted against th F1 Score.

When comparing the F1 score based on the validation set with the F1 Score where training set images were added (to a max. of 200 images), we see for the majority of the species no large difference (see figure below). Only for a few species, those that have a low "Validation" F1 Score, we see a large difference with the F1 Score that includes training images (the species Conus compressus, Conus gloriamaris, Conus turritinus and Conus vezzaroi). This is expected.

Confusion Matrix

The confusion matrix shows which species are confused most often. Following species are confused most often:

Visual inspection shows there are similarities between both species:

Table VI. Images of the most confused Conus species

Conus ardisiacusConus aemulus Conus asiaticusConus alabaster Conus andenensisConus angasi
Significant misclassification was confined to this species. In contrast, misclassified individuals of other species were not concentrated in any particular group.

Additional tests

Additional images were collected after model creation. This anecdotal test for several species confirm the performance of the model (Table VI).

Table VI. Additional tests of the performance of the Conus model.

Species Recall (Conf. interval) New images Correct prediction Wrong prediction Recall (for test images) Avg. (softmax) probability
Conus ammiralis 0.98 (0.96-0.995) 85 85 0 1.00 0.99
Conus striatus 0.965 (0.935-0.986) 43 41 2 0.95 0.93
Conus mustelinus 0.994 (0.979-1.0) 53 52 1 0.94 0.98
Conus merletti 0.973 (0.903-1.0) 51 46 5 0.89 0.90
Conus amadis 0.975 (0.941-1.0) 24 23 1 0.90 0.96
Table VI presents the recall and associated confidence intervals calculated from the validation sets for each tested species, alongside the classification outcomes for newly tested images. Two images of Conus striatus were misclassified, although with relatively low prediction probabilities (0.58 and 0.55). More notably, four images of Conus merletti were consistently misclassified. These images depict a single specimen photographed from different angles and under slightly varying contrast conditions. All were incorrectly identified as Conus moluccensis, a species visually similar to Conus merletti. Potential explanations for this misclassification include the possibility that the specimen is genuinely Conus moluccensis rather than Conus merletti, or that there are inaccuracies or overlaps within the training dataset—for example, Conus moluccensis specimens mistakenly included within the Conus merletti class. Another interpretation is that these two species might actually represent varieties of the same species.

Discussion

Developing a CNN-based classification model for the Conus genus involves a variety of unique challenges stemming from both the taxonomic complexity of this group and the subtle characteristics that distinguish its species. One of the most significant hurdles is that Conus species are primarily differentiated by their color patterns, which can be very similar across species. Even minor variations in lighting, shell wear, and image quality can obscure these differences, making it difficult for a CNN to accurately distinguish one species from another.

Compounding this challenge is the sheer size of the Conus genus—currently recognized to include 853 species—making it one of the largest genera within the Mollusca phylum (WoRMS, MolluscaBase). Handling such a large number of classes naturally demands more computational resources, including significant memory capacity. As a result, training a Conus CNN model can be both computationally expensive and time-consuming, often taking over four hours on our infrastructure.

Another important factor is that Conus shells are highly sought after by collectors, leading to a relatively large pool of publicly available images. On the one hand, this abundance of data provides a rich resource for model training. On the other hand, it requires careful data management to account for variations in image quality, resolution, and lighting conditions, as well as potential imbalances in how frequently each species is photographed.

Altogether, these considerations—high species diversity, subtle morphological and color distinctions, and a sizable but variably curated dataset—highlight the complexity of creating a robust Conus CNN model. Building such a model requires thorough data curation, meticulous preprocessing, and a well-designed computational infrastructure capable of supporting prolonged training periods. Our CNN model achieved an accuracy of 96%, utilizing 130 373 cone snail shell images.

Before model training, extensive pre-processing is performed. All images were analyzed to detect the number of shells in the image and a separate image was made for each shell. If possible, the background was changed to black. A fixed input size of 400x400 pixels was used. Images were made square if needed. A final , manual step was included to select images that clearly show shell features that help in species identification.

Metrics calculated for each species (recall, precision and F1 score) shows that a large proportion of all species can be identified reliable. Calculation of the confidence intervals support this conclusion.

Two other models of the Conus genus were created before, both with good performance [5, 6]. The team at Naturalis, Leiden created several models for several topics, including also a Conus model. The model was trained on 797 Conus species, 15 877 images. Performance of the model is not communicated, but a limited tests (data not shown) show a good performance. N. Qasmi et al. have also made a Conus AI model, based on 47 600 images on 119 Conus species. Their model has 95% accuracy using a combination of Random Forest (RF), XGBoost (XGB) methods and feature extraction using a CNN.

Two other Conus genus recognition models have been previously published, each demonstrating promising but somewhat different approaches and datasets [5, 6]. First, a team at Naturalis in Leiden created several AI-based image-recognition pilots, among which was a Conus model trained on 15,877 images spanning 797 species [5]. Although overall performance results were not formally published, a small pilot evaluations (data not shown) suggested the model delivered robust predictions for many Conus species. This suggests that even with a moderately sized dataset (15,877 images), accurate species-level classification can still be achieved if the training images are curated carefully and taxonomic labels are standardized (e.g., via WoRMS).

Second, a recently reported model by Qasmi et al. [6] employed a combined approach of deep learning (VGG16 for feature extraction) and ensemble supervised learning (Random Forest and XGBoost). Their dataset encompassed 47,600 images of 119 Conus species, achieving around 95% accuracy. Notably, their workflow involved explicit feature-engineering steps—such as color moments, local binary patterns, and Haralick textures—before applying ensemble classifiers. This pipeline effectively demonstrated how hybrid methods (deep feature extraction plus machine-learning classifiers) can yield strong performance in a challenging fine-grained domain.

Compared to these two models, the CNN described in this study substantially broadens the species coverage to 518 species, incorporating 130,373 images—a dataset volume almost three times as large as Qasmi’s and well above the Naturalis pilot. Nonetheless, it attains a similarly strong performance: an accuracy of 96% with a macro-average F1 score around 0.96. This outcome underscores two important points:

  1. Broader Taxonomic Scope vs. High Accuracy: Expanding classification from 119 to 518 Conus species introduces further inter-class similarity, increasing the risk of misclassification. Despite this, the final accuracy remains comparable to previous efforts, implying that large-scale coverage does not necessarily diminish model precision—provided the dataset is well curated and sufficient computational resources are available.
  2. End-to-End CNN Training vs. Hybrid Feature Extraction: Unlike Qasmi et al.’s approach, which used a CNN (VGG16) mainly for feature extraction before applying classical ensemble methods, this model employs a fine-tuned convolutional neural network pipeline. Both methods illustrate valid strategies for biodiversity image classification. Ensemble approaches may be easier to interpret or to integrate with domain-specific features, whereas fine-tuning a CNN can leverage the model’s internal feature hierarchy, especially when the training set is extensive.

Another distinguishing factor is the volume and diversity of images. In the Naturalis pilot, images came predominantly from a handful of museum collections plus some private collections (15,877 total) ​[5]. Here, over 130,000 images were aggregated from a wide array of sources, including community-driven repositories, potentially bringing greater variance in lighting conditions, viewpoints, and shell morphologies. While this diversity strengthens generalizability, it also escalates demands on data preprocessing, standardization, and computational power. In particular, the workflow included automated image segmentation (one shell per image) and uniform background replacement—steps that appear to significantly streamline model training. Both the Naturalis pilot and Qasmi et al. ​[6] used similarly rigorous approaches for data cleaning, but with smaller datasets and fewer species, the effect of image variation may have been comparatively lower.

At last, a notable distinction in the current study is the use of transfer learning and fine-tuning, particularly leveraging an EfficientNet architecture pretrained on ImageNet. Although ImageNet does not contain seashell images, the extensive and diverse features learned from over a million labeled images still confer a significant advantage when training on the Conus dataset—or any other seashell dataset. By pretraining on ImageNet and then fine-tuning on domain-specific images, the model inherits rich, general-purpose visual representations that aid in discerning even subtle morphological details of shells. This approach is particularly effective for fine-grained biodiversity classification, where expert-labeled data are often scarce and species distinctions can be minute. ​[7].

Although direct performance comparisons can be confounded by differences in taxonomy, image sources, or evaluation protocols, these concurrent findings strongly support the viability of AI-based classification for large, visually diverse mollusk genera. Future work may involve combining the strengths of these approaches: unifying data from multiple sources, benchmarking different architectures or ensemble methods, and assessing the impact of refined taxonomic standards on model reliability.

One of the major challenges in building a robust Conus classification model is the imbalance in species representation, where some species have thousands of images while others have only a few. This imbalance is a common issue in biological datasets, where rare or newly discovered species often have limited available data ​[1, 2]. Few-shot learning techniques based on meta-learning and contrastive learning have been successfully applied in biodiversity classification to address data scarcity [8]. In recent studies, prototypical networks and metric-based learning have enabled models to recognize species with only a few labeled images by learning generalized feature spaces that capture taxonomic similarities [9, 10]. Similarly, contrastive learning, which pretrains models using large unlabeled datasets, has demonstrated superior transferability for species recognition tasks [11, 12]. Future work could explore such approaches to enhance classification performance for Conus species with very few training images, reducing the impact of dataset imbalance. By incorporating these advanced transfer-learning methods, AI models could better support biodiversity research, particularly for rare and underrepresented species.

This Conus AI model is a node of the hierarchical CNN model available at Identifyshell.org.

Conclusion

In summary, this work demonstrates the feasibility and accuracy of a large-scale CNN-based classification model for Conus shells — one of the most diverse and taxonomically challenging groups within the Mollusca. By assembling a dataset of over 130,000 images representing 518 species, we highlight the key hurdles inherent to fine-grained shell identification, including taxonomic ambiguity, limited or imbalanced species-specific data, and subtle morphological differences. Careful data curation, background standardization, and strategic model fine-tuning were crucial in achieving consistent performance across hundreds of species, as evidenced by high macro-averaged metrics and reliable confidence intervals.
The findings underscore that high coverage of Conus species need not compromise classification accuracy, provided the dataset is sufficiently robust and preprocessing steps are meticulously executed. Comparing our results to earlier Conus AI models further illustrates how diverse computational strategies—ranging from end-to-end CNN training to hybrid feature extraction—can yield strong results in challenging biodiversity contexts. These approaches collectively validate the viability of automated shell recognition on a scale that can significantly accelerate research and improve collection management for museums, citizen science platforms, and other stakeholders interested in marine biodiversity.

References

Table II: Images per Species

Species Images Species Images Species Images Species Images
Conus abbreviatus86Conus coelinae109Conus koukae57Conus radiatus422
Conus abrolhosensis127Conus coffeae153Conus krabiensis53Conus ranonganus153
Conus achatinus215Conus collisus186Conus kulkulcan87Conus rattus445
Conus acutangulus476Conus colmani67Conus kuroharai185Conus raulsilvai57
Conus adamsonii412Conus compressus51Conus largilliertii67Conus rawaiensis47
Conus adenensis38Conus conco111Conus laterculatus174Conus recluzianus134
Conus advertex190Conus consors806Conus lecourtorum46Conus recurvus135
Conus aemulus260Conus conspersus41Conus leehmani55Conus reductaspiralis256
Conus africanus87Conus corallinus344Conus legatus273Conus regius453
Conus alabaster42Conus corbieri82Conus lemniscatus310Conus regonae68
Conus albuquerquei71Conus cordigera544Conus lenavati406Conus regularis248
Conus alconnelli106Conus coronatus39Conus leobottonii149Conus reticulatus90
Conus alexandrei99Conus crocatus521Conus leopardus322Conus retifer186
Conus alexandrinus45Conus crotchii938Conus lienardi259Conus richardsae39
Conus algoensis98Conus cuneolus590Conus limpusi185Conus richeri107
Conus aliwalensis61Conus curassaviensis205Conus lineopunctatus68Conus riosi79
Conus allaryi63Conus curralensis59Conus lischkeanus256Conus rizali144
Conus amadis604Conus cuvieri158Conus litoglyphus503Conus robini363
Conus ambiguus121Conus cyanostoma124Conus litteratus789Conus roeckeli102
Conus ammiralis1087Conus cylindraceus167Conus lividus513Conus rolani327
Conus amphiurgus78Conus dalli90Conus lizardensis107Conus roseorapum129
Conus amplus35Conus damottai378Conus locumtenens284Conus rosiae82
Conus anabathrum286Conus dampierensis104Conus lohri87Conus royaikeni189
Conus anabelae57Conus daucus512Conus longilineus240Conus rufimaculosus181
Conus andamanensis72Conus dayriti156Conus luciae69Conus samiae234
Conus anemone664Conus decoratus58Conus luteus51Conus sandwichensis50
Conus anemone anemone37Conus dedonderi129Conus lynceus188Conus sanguinolentus42
Conus anemone novaehollandiae243Conus delanoyae510Conus maculospira107Conus santinii144
Conus angasi48Conus desidiosus40Conus madagascariensis42Conus saragasae53
Conus antoniomonteiroi58Conus devorsinei156Conus magellanicus137Conus scabriusculus108
Conus aplustre143Conus diadema97Conus magnificus289Conus scalaris86
Conus arafurensis53Conus diminutus63Conus magus1565Conus scalarissimus110
Conus araneosus190Conus distans481Conus maioensis247Conus scottjordani112
Conus araneosus nicobaricus273Conus dominicanus376Conus malabaricus43Conus sculletti254
Conus archetypus56Conus dorreensis316Conus malacanus324Conus sertacinctus123
Conus archiepiscopus624Conus dusaveli855Conus maldivus276Conus shikamai102
Conus archon106Conus easoni33Conus mappa46Conus sogodensis49
Conus ardisiaceus58Conus ebraeus541Conus marchionatus405Conus solangeae264
Conus arenatus893Conus eburneus949Conus marielae63Conus solomonensis85
Conus aristophanes232Conus echinophilus199Conus marimaris134Conus spectrum387
Conus armadillo175Conus edaphus38Conus marmoreus217Conus spiceri25
Conus artoptus101Conus eldredi46Conus martensi275Conus splendidulus76
Conus asiaticus72Conus emaciatus284Conus mascarenensis79Conus sponsalis439
Conus asiaticus lovellreevei82Conus encaustus185Conus mcbridei43Conus spurius122
Conus ateralbus224Conus episcopatus575Conus medoci96Conus stainforthii110
Conus atlanticus122Conus episcopus63Conus medvedevi28Conus stercusmuscarum282
Conus atractus30Conus epistomium39Conus melvilli301Conus stimpsoni215
Conus attenuatus146Conus ermineus453Conus mercator1703Conus stramineus102
Conus augur234Conus erythraeensis83Conus merletti186Conus striatellus573
Conus aulicus641Conus escondidai55Conus micropunctatus133Conus striatus1021
Conus aurantius150Conus eversoni55Conus miles495Conus striolatus197
Conus auratinus71Conus excelsus185Conus miliaris371Conus stupa64
Conus aureus584Conus exiguus306Conus milneedwardsi192Conus stupella110
Conus aureus paulucciae52Conus eximius133Conus miniexcelsus58Conus suduirauti75
Conus auricomus94Conus explorator50Conus minnamurra86Conus sugillatus142
Conus aurisiacus410Conus felitae68Conus mitratus402Conus sugimotonis246
Conus australis787Conus fergusoni189Conus moluccensis435Conus sukhadwalai35
Conus austroviola85Conus ferrugineus695Conus monachus201Conus sulcatus227
Conus axelrodi358Conus figulinus554Conus moncuri54Conus sulcocastaneus449
Conus babaensis46Conus fijisulcatus34Conus monicae110Conus suratensis481
Conus bahamensis43Conus filmeri38Conus monile1356Conus suturatus120
Conus bairstowi138Conus fischoederi136Conus moreleti140Conus swainsoni103
Conus balabacensis144Conus flavescens113Conus mozambicus230Conus sydneyensis52
Conus balteatus402Conus flavidus591Conus mucronatus240Conus tabidus140
Conus bandanus710Conus flavus73Conus muriculatus319Conus tacomae108
Conus barbara221Conus flavusalbus54Conus mus192Conus taeniatus181
Conus barbieri144Conus floccatus1366Conus musicus487Conus tagaroae154
Conus barthelemyi728Conus floridulus480Conus mustelinus787Conus taitensis40
Conus bartschi35Conus fragilissimus28Conus namocanus280Conus takahashii120
Conus bayani174Conus franciscanus292Conus nanus166Conus telatus106
Conus beatrix69Conus franciscoi37Conus naranjus46Conus tenuistriatus101
Conus behelokensis544Conus frigidus107Conus natalis263Conus terebra535
Conus belairensis366Conus fulmen116Conus navarroi62Conus tessulatus1120
Conus bengalensis435Conus fumigatus137Conus neocostatus31Conus textile2923
Conus berdulinus110Conus furvus1976Conus neptunus459Conus thailandis107
Conus betulinus812Conus fuscatus123Conus niederhoeferi46Conus thalassiarchus1439
Conus biliosus228Conus fuscoflavus439Conus nielsenae109Conus therriaulti41
Conus biliosus meyeri75Conus fuscolineatus155Conus nigropunctatus130Conus thomae203
Conus biliosus parvulus88Conus galeao142Conus nimbosus208Conus tiaratus74
Conus bizona63Conus garciai77Conus nobilis206Conus timorensis85
Conus blanfordianus252Conus garywilsoni67Conus nobrei44Conus tinianus370
Conus boavistensis98Conus gauguini839Conus nocturnus102Conus tostesi63
Conus bocagei36Conus generalis1634Conus nodulosus44Conus transkeiensis73
Conus bocki101Conus genuanus233Conus norai55Conus tribblei699
Conus boeticus643Conus geographus449Conus nucleus64Conus trigonus103
Conus borgesi255Conus gilvus41Conus nussatella573Conus trinitarius44
Conus brettinghami171Conus gisellelieae260Conus nux282Conus tristensis80
Conus brianhayesi43Conus gladiator227Conus obscurus347Conus trochulus282
Conus broderipii52Conus glans290Conus ochroleucus172Conus tulipa453
Conus bruguieresi115Conus glaucus410Conus oishii368Conus turritinus38
Conus brunneobandatus65Conus glenni39Conus omaria1151Conus typhon154
Conus brunneus157Conus gloriamaris108Conus orion85Conus unifasciatus141
Conus bruuni224Conus glorioceanus202Conus papilliferus128Conus urashimanus40
Conus bulbus118Conus goajira41Conus parius125Conus vanvilstereni43
Conus bullatus1291Conus gondwanensis38Conus parvatus215Conus variegatus123
Conus burryae68Conus gonsaloi38Conus patae63Conus varius518
Conus buxeus loroisii292Conus goudeyi38Conus patricius210Conus vautieri150
Conus byssinus141Conus gracianus30Conus paulae41Conus ventricosus369
Conus calhetae36Conus gradatulus155Conus pauperculus33Conus venulatus448
Conus cancellatus109Conus grahami47Conus peasei49Conus verdensis88
Conus cancellatus capricorni60Conus granarius196Conus peli30Conus vexillum1184
Conus cancellatus finkli115Conus granulatus97Conus penchaszadehi47Conus vezoi207
Conus canonicus393Conus granum375Conus pennaceus1501Conus vezzaroi55
Conus capitanellus445Conus guanche288Conus pergrandis253Conus victor26
Conus capitaneus881Conus gubernator1014Conus perrineae83Conus victoriae789
Conus caracteristicus321Conus guinaicus542Conus pertusus935Conus vicweei132
Conus carcellesi46Conus harlandi79Conus petergabrieli37Conus vidua359
Conus cardinalis78Conus hazinorum40Conus petestimpsoni48Conus villepinii162
Conus cargilei133Conus hieroglyphus102Conus pica482Conus viola366
Conus carioca104Conus hirasei291Conus pictus131Conus violaceus31
Conus carnalis74Conus hyaena109Conus planorbis905Conus virgatus305
Conus castaneofasciatus47Conus immelmani36Conus plinthis114Conus virgo524
Conus cathyae47Conus imperialis923Conus polongimarumai39Conus visagenus68
Conus catus573Conus indomaris129Conus pongo65Conus vittatus257
Conus cebuensis177Conus infinitus112Conus poormani142Conus vitulinus324
Conus cedonulli245Conus infrenatus101Conus praecellens585Conus voluminalis957
Conus cepasi49Conus inscriptus382Conus praelatus177Conus vulcanus98
Conus cervus64Conus iodostoma195Conus pretiosus237Conus wallangra100
Conus chaldaeus399Conus janus423Conus princeps552Conus wittigi125
Conus chiangi148Conus jickelii202Conus proximus337Conus xanthocinctus103
Conus chiapponorum54Conus josephinae155Conus pseudimperialis76Conus zandbergeni149
Conus chytreus128Conus jucundus83Conus pseudocardinalis49Conus zapatosensis118
Conus cinereus469Conus judaeus60Conus pseudocedonulli42Conus zebra118
Conus circumactus269Conus julieandreae56Conus pseudonivifer312Conus zebroides104
Conus circumcisus1375Conus julii80Conus pulcher289Conus zeylanicus249
Conus clarus162Conus kaiserae84Conus pulicarius792Conus ziczac58
Conus clerii242Conus kermadecensis87Conus purpurascens310Conus zonatus180
Conus cloveri110Conus kinoshitai765Conus purus179Conus zylmanae134
Conus cocceus128Conus kintoki337Conus queenslandis99
Species with more than 25 images are shown.

Table V. Metrics and confidence intervals

Validation All Images
Species # Validation
Images
Recall Precision F1 F1 F1 Difference
Conus abbas261.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus abbreviatus171.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9880.012
Conus abrolhosensis251.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9840.016
Conus achatinus420.929 (0.84-1.0)0.907 (0.815-0.978)0.918 (0.846-0.968)0.952-0.035
Conus acutangulus950.979 (0.948-1.0)0.969 (0.93-1.0)0.974 (0.948-0.995)0.985-0.011
Conus adamsonii820.988 (0.958-1.0)0.988 (0.961-1.0)0.988 (0.968-1.0)0.9850.003
Conus adenensis71.0 (1.0-1.0)0.28 (0.107-0.455)0.438 (0.194-0.625)0.54-0.103
Conus advertex371.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9840.016
Conus aemulus510.941 (0.873-1.0)0.923 (0.843-0.983)0.932 (0.875-0.977)0.935-0.003
Conus africanus171.0 (1.0-1.0)0.85 (0.692-1.0)0.919 (0.818-1.0)0.961-0.042
Conus alabaster80.875 (0.571-1.0)0.875 (0.556-1.0)0.875 (0.625-1.0)0.8420.033
Conus albuquerquei141.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9930.007
Conus alconnelli211.0 (1.0-1.0)0.955 (0.85-1.0)0.977 (0.919-1.0)0.9670.01
Conus alexandrei191.0 (1.0-1.0)0.95 (0.833-1.0)0.974 (0.909-1.0)0.975-0.0
Conus alexandrinus80.875 (0.571-1.0)1.0 (1.0-1.0)0.933 (0.727-1.0)0.945-0.012
Conus algoensis191.0 (1.0-1.0)0.95 (0.833-1.0)0.974 (0.909-1.0)0.975-0.001
Conus aliwalensis121.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus allaryi121.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.950.05
Conus amadis1200.975 (0.941-1.0)0.967 (0.933-0.993)0.971 (0.947-0.99)0.970.001
Conus ambiguus240.917 (0.8-1.0)0.815 (0.654-0.947)0.863 (0.744-0.952)0.924-0.061
Conus ammiralis2000.98 (0.96-0.995)0.99 (0.973-1.0)0.985 (0.971-0.995)0.9850.0
Conus amphiurgus151.0 (1.0-1.0)0.882 (0.692-1.0)0.938 (0.818-1.0)0.9240.013
Conus amplus61.0 (1.0-1.0)0.857 (0.556-1.0)0.923 (0.714-1.0)0.9120.011
Conus anabathrum571.0 (1.0-1.0)0.966 (0.914-1.0)0.983 (0.955-1.0)0.9750.008
Conus anabelae110.909 (0.7-1.0)0.909 (0.667-1.0)0.909 (0.737-1.0)0.973-0.064
Conus andamanensis141.0 (1.0-1.0)0.933 (0.778-1.0)0.966 (0.875-1.0)0.9660.0
Conus anemone1320.848 (0.783-0.904)0.957 (0.918-0.991)0.9 (0.857-0.936)0.8930.007
Conus anemone anemone70.857 (0.5-1.0)1.0 (1.0-1.0)0.923 (0.667-1.0)0.9120.011
Conus anemone novaehollandiae480.938 (0.861-1.0)0.818 (0.712-0.919)0.874 (0.796-0.937)0.936-0.062
Conus angasi91.0 (1.0-1.0)0.75 (0.455-1.0)0.857 (0.625-1.0)0.898-0.041
Conus antoniomonteiroi111.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9730.027
Conus aplustre281.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9760.024
Conus arafurensis101.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.990.01
Conus araneosus371.0 (1.0-1.0)0.974 (0.909-1.0)0.987 (0.952-1.0)0.989-0.003
Conus araneosus nicobaricus540.981 (0.938-1.0)1.0 (1.0-1.0)0.991 (0.968-1.0)0.995-0.004
Conus archetypus110.909 (0.7-1.0)1.0 (1.0-1.0)0.952 (0.823-1.0)0.973-0.021
Conus archiepiscopus1240.903 (0.85-0.953)0.762 (0.698-0.827)0.827 (0.779-0.87)0.87-0.043
Conus archon211.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus ardisiaceus111.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9380.062
Conus arenatus1780.972 (0.943-0.994)1.0 (1.0-1.0)0.986 (0.971-0.997)0.970.016
Conus aristophanes461.0 (1.0-1.0)0.979 (0.927-1.0)0.989 (0.962-1.0)0.99-0.001
Conus armadillo340.971 (0.896-1.0)1.0 (1.0-1.0)0.985 (0.945-1.0)0.997-0.012
Conus artoptus201.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.980.02
Conus asiaticus140.929 (0.769-1.0)0.929 (0.778-1.0)0.929 (0.814-1.0)0.920.009
Conus asiaticus lovellreevei161.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9750.025
Conus ateralbus440.955 (0.889-1.0)0.857 (0.745-0.952)0.903 (0.825-0.962)0.95-0.047
Conus atlanticus241.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus atractus51.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9830.017
Conus attenuatus291.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9830.017
Conus augur460.978 (0.923-1.0)1.0 (1.0-1.0)0.989 (0.96-1.0)0.995-0.006
Conus aulicus1280.953 (0.915-0.986)1.0 (1.0-1.0)0.976 (0.955-0.993)0.9740.002
Conus aurantius290.931 (0.821-1.0)1.0 (1.0-1.0)0.964 (0.902-1.0)0.977-0.012
Conus auratinus141.0 (1.0-1.0)0.933 (0.778-1.0)0.966 (0.875-1.0)0.986-0.02
Conus aureus1160.871 (0.805-0.927)0.953 (0.908-0.99)0.91 (0.862-0.945)0.8930.017
Conus aureus paulucciae100.9 (0.667-1.0)1.0 (1.0-1.0)0.947 (0.8-1.0)0.99-0.043
Conus auricomus180.833 (0.643-1.0)0.536 (0.344-0.725)0.652 (0.465-0.793)0.8-0.148
Conus aurisiacus811.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus australis1570.994 (0.98-1.0)0.987 (0.968-1.0)0.99 (0.979-1.0)0.980.01
Conus austroviola161.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9830.017
Conus axelrodi710.986 (0.95-1.0)0.986 (0.954-1.0)0.986 (0.961-1.0)0.99-0.004
Conus babaensis91.0 (1.0-1.0)0.818 (0.556-1.0)0.9 (0.714-1.0)0.947-0.047
Conus bahamensis80.875 (0.6-1.0)1.0 (1.0-1.0)0.933 (0.75-1.0)0.964-0.031
Conus bairstowi271.0 (1.0-1.0)0.931 (0.828-1.0)0.964 (0.906-1.0)0.993-0.029
Conus balabacensis281.0 (1.0-1.0)0.903 (0.778-1.0)0.949 (0.875-1.0)0.966-0.016
Conus balteatus800.925 (0.859-0.976)1.0 (1.0-1.0)0.961 (0.924-0.988)0.967-0.006
Conus bandanus1410.936 (0.891-0.973)0.978 (0.951-1.0)0.957 (0.929-0.98)0.9420.014
Conus barbara440.909 (0.814-0.98)0.952 (0.881-1.0)0.93 (0.864-0.98)0.964-0.034
Conus barbieri281.0 (1.0-1.0)0.966 (0.882-1.0)0.982 (0.937-1.0)0.993-0.011
Conus barthelemyi1451.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9980.002
Conus bartschi61.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9710.029
Conus bayani341.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9890.011
Conus beatrix131.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus behelokensis1080.944 (0.898-0.982)0.903 (0.845-0.954)0.923 (0.883-0.958)0.934-0.011
Conus belairensis731.0 (1.0-1.0)0.961 (0.912-1.0)0.98 (0.954-1.0)0.9730.007
Conus bengalensis860.988 (0.962-1.0)0.988 (0.961-1.0)0.988 (0.97-1.0)0.993-0.004
Conus berdulinus210.857 (0.692-1.0)1.0 (1.0-1.0)0.923 (0.818-1.0)0.953-0.03
Conus betulinus1620.981 (0.958-1.0)0.994 (0.98-1.0)0.988 (0.973-0.997)0.99-0.002
Conus biliosus450.933 (0.857-1.0)0.955 (0.875-1.0)0.944 (0.889-0.989)0.955-0.011
Conus biliosus meyeri141.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9210.079
Conus biliosus parvulus171.0 (1.0-1.0)0.895 (0.727-1.0)0.944 (0.842-1.0)0.9430.001
Conus bizona120.917 (0.714-1.0)0.786 (0.5-1.0)0.846 (0.643-1.0)0.923-0.077
Conus blanfordianus500.92 (0.833-0.982)0.979 (0.926-1.0)0.948 (0.893-0.99)0.965-0.016
Conus boavistensis191.0 (1.0-1.0)0.95 (0.833-1.0)0.974 (0.909-1.0)0.9490.025
Conus bocagei70.857 (0.5-1.0)1.0 (1.0-1.0)0.923 (0.667-1.0)0.941-0.018
Conus bocki201.0 (1.0-1.0)0.833 (0.68-0.964)0.909 (0.81-0.982)0.966-0.056
Conus boeticus1280.938 (0.894-0.977)0.96 (0.924-0.992)0.949 (0.92-0.976)0.9450.003
Conus borgesi501.0 (1.0-1.0)0.98 (0.938-1.0)0.99 (0.968-1.0)0.9750.015
Conus brettinghami340.971 (0.902-1.0)0.917 (0.808-1.0)0.943 (0.875-0.988)0.944-0.001
Conus brianhayesi81.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus broderipii101.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.970.03
Conus bruguieresi220.909 (0.769-1.0)1.0 (1.0-1.0)0.952 (0.87-1.0)0.983-0.03
Conus brunneobandatus121.0 (1.0-1.0)0.857 (0.625-1.0)0.923 (0.769-1.0)0.9120.011
Conus brunneus310.968 (0.889-1.0)0.968 (0.882-1.0)0.968 (0.914-1.0)0.9680.0
Conus bruuni440.977 (0.923-1.0)0.977 (0.917-1.0)0.977 (0.936-1.0)0.987-0.01
Conus bulbus230.957 (0.85-1.0)1.0 (1.0-1.0)0.978 (0.919-1.0)0.987-0.009
Conus bullatus2001.0 (1.0-1.0)0.985 (0.966-1.0)0.993 (0.983-1.0)0.9780.015
Conus burryae131.0 (1.0-1.0)0.929 (0.769-1.0)0.963 (0.87-1.0)0.978-0.015
Conus buxeus loroisii580.948 (0.887-1.0)0.982 (0.938-1.0)0.965 (0.926-0.992)0.982-0.017
Conus byssinus281.0 (1.0-1.0)0.875 (0.743-0.976)0.933 (0.852-0.988)0.962-0.028
Conus calhetae70.714 (0.333-1.0)1.0 (1.0-1.0)0.833 (0.5-1.0)0.861-0.028
Conus cancellatus210.952 (0.85-1.0)1.0 (1.0-1.0)0.976 (0.919-1.0)0.9420.033
Conus cancellatus capricorni111.0 (1.0-1.0)0.846 (0.625-1.0)0.917 (0.769-1.0)0.944-0.027
Conus cancellatus finkli220.955 (0.844-1.0)1.0 (1.0-1.0)0.977 (0.915-1.0)0.9440.033
Conus canonicus780.962 (0.913-1.0)0.862 (0.787-0.929)0.909 (0.859-0.953)0.939-0.03
Conus capitanellus881.0 (1.0-1.0)0.978 (0.942-1.0)0.989 (0.97-1.0)0.995-0.006
Conus capitaneus1760.972 (0.945-0.994)1.0 (1.0-1.0)0.986 (0.972-0.997)0.9850.001
Conus caracteristicus641.0 (1.0-1.0)0.985 (0.952-1.0)0.992 (0.975-1.0)0.998-0.005
Conus carcellesi91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9320.068
Conus cardinalis151.0 (1.0-1.0)0.882 (0.714-1.0)0.938 (0.833-1.0)0.9190.018
Conus cargilei261.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus carioca200.95 (0.824-1.0)1.0 (1.0-1.0)0.974 (0.903-1.0)0.9720.003
Conus carnalis140.929 (0.769-1.0)0.867 (0.647-1.0)0.897 (0.737-1.0)0.973-0.077
Conus castaneofasciatus91.0 (1.0-1.0)0.9 (0.667-1.0)0.947 (0.8-1.0)0.9330.014
Conus cathyae91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9890.011
Conus catus1140.956 (0.918-0.991)0.948 (0.899-0.984)0.952 (0.921-0.977)0.950.001
Conus cebuensis351.0 (1.0-1.0)0.972 (0.907-1.0)0.986 (0.951-1.0)0.9780.008
Conus cedonulli480.979 (0.933-1.0)0.922 (0.84-0.984)0.949 (0.899-0.989)0.97-0.021
Conus cepasi91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus cervus121.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9760.024
Conus chaldaeus790.975 (0.935-1.0)1.0 (1.0-1.0)0.987 (0.967-1.0)0.9850.002
Conus chiangi291.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9930.007
Conus chiapponorum101.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9810.019
Conus chytreus251.0 (1.0-1.0)0.926 (0.812-1.0)0.962 (0.897-1.0)0.977-0.015
Conus cinereus931.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9980.002
Conus circumactus530.981 (0.938-1.0)0.881 (0.797-0.955)0.929 (0.874-0.972)0.963-0.035
Conus circumcisus2000.985 (0.965-1.0)0.985 (0.966-1.0)0.985 (0.971-0.995)0.9850.0
Conus clarus321.0 (1.0-1.0)0.97 (0.892-1.0)0.985 (0.943-1.0)0.9660.018
Conus clerii480.979 (0.931-1.0)0.94 (0.864-1.0)0.959 (0.912-0.991)0.9540.005
Conus cloveri210.952 (0.842-1.0)1.0 (1.0-1.0)0.976 (0.914-1.0)0.986-0.011
Conus cocceus251.0 (1.0-1.0)0.926 (0.818-1.0)0.962 (0.9-1.0)0.973-0.011
Conus coccineus450.978 (0.929-1.0)1.0 (1.0-1.0)0.989 (0.963-1.0)0.995-0.006
Conus coelinae211.0 (1.0-1.0)0.955 (0.846-1.0)0.977 (0.917-1.0)0.9590.018
Conus coffeae301.0 (1.0-1.0)0.968 (0.894-1.0)0.984 (0.944-1.0)0.9740.01
Conus collisus370.973 (0.909-1.0)0.878 (0.771-0.972)0.923 (0.853-0.977)0.966-0.043
Conus colmani131.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9930.007
Conus compressus100.8 (0.5-1.0)0.615 (0.333-0.9)0.696 (0.429-0.889)0.865-0.17
Conus conco221.0 (1.0-1.0)0.917 (0.789-1.0)0.957 (0.882-1.0)0.973-0.017
Conus consors1610.932 (0.886-0.968)0.98 (0.954-1.0)0.955 (0.927-0.976)0.9460.01
Conus conspersus81.0 (1.0-1.0)0.471 (0.235-0.722)0.64 (0.381-0.839)0.718-0.078
Conus corallinus680.971 (0.922-1.0)1.0 (1.0-1.0)0.985 (0.959-1.0)0.9720.013
Conus corbieri161.0 (1.0-1.0)0.8 (0.6-0.957)0.889 (0.75-0.978)0.952-0.063
Conus cordigera1081.0 (1.0-1.0)0.991 (0.97-1.0)0.995 (0.985-1.0)0.990.005
Conus coronatus71.0 (1.0-1.0)0.875 (0.571-1.0)0.933 (0.727-1.0)0.975-0.042
Conus crocatus1040.99 (0.967-1.0)0.99 (0.966-1.0)0.99 (0.973-1.0)0.980.01
Conus crotchii1870.813 (0.755-0.866)0.956 (0.922-0.987)0.879 (0.842-0.912)0.840.039
Conus cuneolus1170.863 (0.8-0.924)0.871 (0.805-0.93)0.867 (0.819-0.909)0.8640.003
Conus curassaviensis401.0 (1.0-1.0)0.976 (0.915-1.0)0.988 (0.956-1.0)0.9720.016
Conus curralensis111.0 (1.0-1.0)0.647 (0.417-0.875)0.786 (0.588-0.933)0.853-0.067
Conus cuvieri310.935 (0.833-1.0)1.0 (1.0-1.0)0.967 (0.909-1.0)0.968-0.001
Conus cyanostoma240.958 (0.857-1.0)1.0 (1.0-1.0)0.979 (0.923-1.0)0.984-0.005
Conus cylindraceus331.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus dalli171.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9940.006
Conus damottai750.867 (0.785-0.938)0.915 (0.841-0.974)0.89 (0.832-0.938)0.932-0.041
Conus dampierensis201.0 (1.0-1.0)0.909 (0.773-1.0)0.952 (0.872-1.0)0.972-0.019
Conus daucus1020.843 (0.768-0.909)0.945 (0.892-0.981)0.891 (0.84-0.933)0.907-0.016
Conus dayriti311.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9970.003
Conus decoratus111.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus dedonderi250.96 (0.857-1.0)0.96 (0.869-1.0)0.96 (0.895-1.0)0.973-0.013
Conus delanoyae1010.832 (0.753-0.904)0.848 (0.772-0.916)0.84 (0.78-0.89)0.889-0.049
Conus desidiosus71.0 (1.0-1.0)0.778 (0.5-1.0)0.875 (0.667-1.0)0.925-0.05
Conus devorsinei311.0 (1.0-1.0)0.969 (0.897-1.0)0.984 (0.945-1.0)0.994-0.01
Conus diadema190.895 (0.727-1.0)0.895 (0.722-1.0)0.895 (0.766-0.974)0.974-0.08
Conus diminutus121.0 (1.0-1.0)0.8 (0.55-1.0)0.889 (0.71-1.0)0.953-0.064
Conus distans960.979 (0.947-1.0)0.989 (0.964-1.0)0.984 (0.965-1.0)0.9770.007
Conus dominicanus750.96 (0.913-1.0)1.0 (1.0-1.0)0.98 (0.955-1.0)0.98-0.0
Conus dorreensis631.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus dusaveli1701.0 (1.0-1.0)0.988 (0.968-1.0)0.994 (0.984-1.0)0.990.004
Conus easoni60.833 (0.4-1.0)1.0 (1.0-1.0)0.909 (0.571-1.0)0.97-0.061
Conus ebraeus1080.963 (0.923-0.991)0.99 (0.968-1.0)0.977 (0.953-0.995)0.9750.002
Conus eburneus1890.974 (0.95-0.994)0.989 (0.974-1.0)0.981 (0.967-0.993)0.9720.009
Conus echinophilus391.0 (1.0-1.0)0.951 (0.872-1.0)0.975 (0.932-1.0)0.982-0.007
Conus edaphus70.857 (0.5-1.0)0.857 (0.5-1.0)0.857 (0.571-1.0)0.974-0.117
Conus eldredi90.889 (0.6-1.0)0.889 (0.625-1.0)0.889 (0.667-1.0)0.945-0.056
Conus emaciatus560.982 (0.943-1.0)0.982 (0.936-1.0)0.982 (0.951-1.0)0.987-0.005
Conus encaustus360.972 (0.912-1.0)0.972 (0.906-1.0)0.972 (0.928-1.0)0.986-0.014
Conus episcopatus1140.956 (0.916-0.991)0.965 (0.925-0.992)0.96 (0.931-0.984)0.963-0.003
Conus episcopus121.0 (1.0-1.0)0.923 (0.733-1.0)0.96 (0.846-1.0)0.992-0.032
Conus epistomium71.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9870.013
Conus ermineus900.933 (0.872-0.978)0.955 (0.904-0.989)0.944 (0.904-0.974)0.96-0.016
Conus erythraeensis161.0 (1.0-1.0)0.842 (0.667-1.0)0.914 (0.8-1.0)0.945-0.031
Conus escondidai101.0 (1.0-1.0)0.833 (0.6-1.0)0.909 (0.75-1.0)0.973-0.064
Conus eversoni101.0 (1.0-1.0)0.909 (0.7-1.0)0.952 (0.823-1.0)0.982-0.03
Conus excelsus360.972 (0.912-1.0)1.0 (1.0-1.0)0.986 (0.954-1.0)0.992-0.006
Conus exiguus611.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus eximius260.962 (0.87-1.0)1.0 (1.0-1.0)0.98 (0.93-1.0)0.9660.015
Conus explorator91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.980.02
Conus felitae131.0 (1.0-1.0)0.765 (0.556-0.944)0.867 (0.714-0.971)0.95-0.083
Conus fergusoni370.973 (0.911-1.0)0.973 (0.903-1.0)0.973 (0.928-1.0)0.981-0.008
Conus ferrugineus1380.877 (0.819-0.932)0.877 (0.818-0.931)0.877 (0.835-0.914)0.886-0.009
Conus figulinus1100.982 (0.955-1.0)0.964 (0.928-0.992)0.973 (0.949-0.992)0.975-0.002
Conus fijisulcatus61.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus filmeri71.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9620.038
Conus fischoederi270.963 (0.879-1.0)0.929 (0.81-1.0)0.945 (0.872-1.0)0.974-0.029
Conus flavescens221.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9870.013
Conus flavidus1180.983 (0.956-1.0)0.967 (0.93-0.992)0.975 (0.952-0.992)0.970.005
Conus flavus141.0 (1.0-1.0)0.824 (0.611-1.0)0.903 (0.759-1.0)0.952-0.049
Conus flavusalbus101.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9720.028
Conus floccatus2000.99 (0.973-1.0)0.99 (0.973-1.0)0.99 (0.978-0.998)0.990.0
Conus floridulus950.968 (0.931-1.0)0.979 (0.946-1.0)0.974 (0.948-0.995)0.9680.006
Conus fragilissimus50.8 (0.0-1.0)1.0 (0.0-1.0)0.889 (0.0-1.0)0.982-0.093
Conus franciscanus581.0 (1.0-1.0)0.935 (0.864-1.0)0.967 (0.927-1.0)0.9660.001
Conus franciscoi71.0 (1.0-1.0)0.875 (0.545-1.0)0.933 (0.706-1.0)0.973-0.04
Conus frigidus210.952 (0.833-1.0)0.909 (0.774-1.0)0.93 (0.828-1.0)0.972-0.041
Conus fulmen230.913 (0.778-1.0)1.0 (1.0-1.0)0.955 (0.875-1.0)0.964-0.01
Conus fumigatus270.926 (0.8-1.0)0.962 (0.87-1.0)0.943 (0.863-1.0)0.963-0.02
Conus furvus2000.9 (0.856-0.94)0.978 (0.957-0.995)0.938 (0.911-0.962)0.9230.014
Conus fuscatus241.0 (1.0-1.0)0.857 (0.714-0.969)0.923 (0.833-0.984)0.967-0.044
Conus fuscoflavus870.92 (0.857-0.973)0.93 (0.873-0.977)0.925 (0.879-0.962)0.945-0.02
Conus fuscolineatus300.967 (0.88-1.0)0.967 (0.88-1.0)0.967 (0.905-1.0)0.97-0.004
Conus galeao280.893 (0.75-1.0)0.833 (0.692-0.962)0.862 (0.744-0.952)0.929-0.067
Conus garciai151.0 (1.0-1.0)0.938 (0.8-1.0)0.968 (0.889-1.0)0.974-0.006
Conus garywilsoni131.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9930.007
Conus gauguini1671.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus generalis2000.93 (0.889-0.963)0.989 (0.971-1.0)0.959 (0.935-0.978)0.9420.017
Conus genuanus461.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus geographus891.0 (1.0-1.0)0.937 (0.88-0.98)0.967 (0.936-0.99)0.983-0.015
Conus gilvus81.0 (1.0-1.0)0.5 (0.231-0.75)0.667 (0.375-0.857)0.734-0.067
Conus gisellelieae511.0 (1.0-1.0)0.944 (0.87-1.0)0.971 (0.93-1.0)0.9710.001
Conus gladiator451.0 (1.0-1.0)0.957 (0.892-1.0)0.978 (0.943-1.0)0.982-0.004
Conus glans570.965 (0.914-1.0)0.932 (0.857-0.984)0.948 (0.901-0.984)0.965-0.017
Conus glaucus811.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus glenni71.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9870.013
Conus gloriamaris211.0 (1.0-1.0)0.636 (0.471-0.8)0.778 (0.64-0.889)0.943-0.165
Conus glorioceanus401.0 (1.0-1.0)0.976 (0.917-1.0)0.988 (0.956-1.0)0.995-0.007
Conus goajira81.0 (1.0-1.0)0.889 (0.625-1.0)0.941 (0.769-1.0)0.965-0.024
Conus gondwanensis71.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.960.04
Conus gonsaloi70.857 (0.5-1.0)1.0 (1.0-1.0)0.923 (0.667-1.0)0.974-0.051
Conus goudeyi70.857 (0.5-1.0)0.75 (0.4-1.0)0.8 (0.5-1.0)0.947-0.147
Conus gracianus50.8 (0.249-1.0)0.8 (0.25-1.0)0.8 (0.286-1.0)0.881-0.081
Conus gradatulus301.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.990.01
Conus grahami90.889 (0.625-1.0)0.8 (0.5-1.0)0.842 (0.6-1.0)0.948-0.106
Conus granarius391.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9820.018
Conus granulatus190.947 (0.824-1.0)1.0 (1.0-1.0)0.973 (0.903-1.0)0.984-0.011
Conus granum740.986 (0.957-1.0)1.0 (1.0-1.0)0.993 (0.978-1.0)0.9730.021
Conus guanche570.965 (0.912-1.0)0.948 (0.889-1.0)0.957 (0.914-0.991)0.9480.009
Conus gubernator2000.975 (0.953-0.995)0.985 (0.965-1.0)0.98 (0.965-0.992)0.9730.007
Conus guinaicus1080.907 (0.843-0.958)0.883 (0.82-0.941)0.895 (0.848-0.934)0.919-0.024
Conus harlandi151.0 (1.0-1.0)0.938 (0.789-1.0)0.968 (0.882-1.0)0.994-0.026
Conus hazinorum70.857 (0.5-1.0)1.0 (1.0-1.0)0.923 (0.667-1.0)0.963-0.04
Conus hieroglyphus201.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus hirasei580.983 (0.943-1.0)1.0 (1.0-1.0)0.991 (0.971-1.0)0.995-0.004
Conus hyaena211.0 (1.0-1.0)0.955 (0.846-1.0)0.977 (0.917-1.0)0.986-0.01
Conus immelmani71.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9860.014
Conus imperialis1840.973 (0.945-0.994)1.0 (1.0-1.0)0.986 (0.972-0.997)0.980.006
Conus indomaris250.96 (0.869-1.0)0.96 (0.857-1.0)0.96 (0.894-1.0)0.984-0.024
Conus infinitus221.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9860.014
Conus infrenatus200.95 (0.833-1.0)1.0 (1.0-1.0)0.974 (0.909-1.0)0.970.004
Conus inscriptus760.895 (0.829-0.96)1.0 (1.0-1.0)0.944 (0.906-0.98)0.9280.016
Conus iodostoma380.974 (0.914-1.0)1.0 (1.0-1.0)0.987 (0.955-1.0)0.992-0.006
Conus janus840.964 (0.92-1.0)1.0 (1.0-1.0)0.982 (0.958-1.0)0.9770.004
Conus jickelii400.975 (0.919-1.0)0.951 (0.878-1.0)0.963 (0.918-1.0)0.975-0.012
Conus josephinae301.0 (1.0-1.0)0.909 (0.8-1.0)0.952 (0.889-1.0)0.955-0.002
Conus jucundus161.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9820.018
Conus judaeus111.0 (1.0-1.0)0.846 (0.625-1.0)0.917 (0.769-1.0)0.942-0.025
Conus julieandreae111.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9910.009
Conus julii151.0 (1.0-1.0)0.938 (0.786-1.0)0.968 (0.88-1.0)0.994-0.026
Conus kaiserae161.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus kermadecensis170.882 (0.688-1.0)1.0 (1.0-1.0)0.938 (0.815-1.0)0.947-0.01
Conus kinoshitai1520.987 (0.967-1.0)0.974 (0.946-0.994)0.98 (0.962-0.994)0.9780.003
Conus kintoki670.955 (0.908-1.0)0.97 (0.922-1.0)0.962 (0.93-0.992)0.97-0.008
Conus klemae471.0 (1.0-1.0)0.979 (0.927-1.0)0.989 (0.962-1.0)0.9830.007
Conus koukae111.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9650.035
Conus krabiensis100.9 (0.667-1.0)0.818 (0.556-1.0)0.857 (0.667-1.0)0.952-0.095
Conus kulkulcan171.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9940.006
Conus kuroharai361.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus largilliertii131.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9620.038
Conus laterculatus340.882 (0.759-0.975)1.0 (1.0-1.0)0.938 (0.863-0.987)0.974-0.036
Conus lecourtorum91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus leehmani101.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9810.019
Conus legatus540.981 (0.938-1.0)1.0 (1.0-1.0)0.991 (0.968-1.0)0.990.001
Conus lemniscatus610.934 (0.868-0.985)1.0 (1.0-1.0)0.966 (0.929-0.992)0.9270.039
Conus lenavati810.988 (0.958-1.0)0.941 (0.886-0.988)0.964 (0.929-0.989)0.9630.001
Conus leobottonii291.0 (1.0-1.0)0.906 (0.794-1.0)0.951 (0.885-1.0)0.98-0.029
Conus leopardus641.0 (1.0-1.0)0.955 (0.903-1.0)0.977 (0.949-1.0)0.985-0.008
Conus lienardi510.961 (0.902-1.0)1.0 (1.0-1.0)0.98 (0.948-1.0)0.99-0.01
Conus limpusi360.972 (0.909-1.0)0.946 (0.862-1.0)0.959 (0.909-1.0)0.984-0.025
Conus lineopunctatus131.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.970.03
Conus lischkeanus510.941 (0.872-1.0)0.96 (0.898-1.0)0.95 (0.901-0.99)0.955-0.005
Conus litoglyphus1000.94 (0.889-0.981)0.979 (0.943-1.0)0.959 (0.927-0.984)0.9590.0
Conus litteratus1570.994 (0.98-1.0)0.981 (0.957-1.0)0.987 (0.973-0.997)0.9830.005
Conus lividus1020.951 (0.908-0.99)0.951 (0.902-0.99)0.951 (0.914-0.979)0.955-0.004
Conus lizardensis211.0 (1.0-1.0)0.955 (0.842-1.0)0.977 (0.914-1.0)0.9670.01
Conus locumtenens560.964 (0.907-1.0)0.982 (0.942-1.0)0.973 (0.94-1.0)0.982-0.009
Conus lohri170.882 (0.692-1.0)0.833 (0.625-1.0)0.857 (0.696-0.968)0.971-0.114
Conus longilineus470.915 (0.826-0.982)0.977 (0.927-1.0)0.945 (0.892-0.989)0.9390.006
Conus luciae131.0 (1.0-1.0)0.929 (0.769-1.0)0.963 (0.869-1.0)0.986-0.023
Conus luteus101.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.980.02
Conus lynceus370.919 (0.818-1.0)0.971 (0.9-1.0)0.944 (0.882-0.987)0.968-0.023
Conus maculospira211.0 (1.0-1.0)0.955 (0.857-1.0)0.977 (0.923-1.0)0.9190.057
Conus madagascariensis81.0 (1.0-1.0)0.727 (0.4-1.0)0.842 (0.571-1.0)0.941-0.099
Conus magellanicus271.0 (1.0-1.0)0.931 (0.823-1.0)0.964 (0.903-1.0)0.9530.012
Conus magnificus571.0 (1.0-1.0)0.95 (0.887-1.0)0.974 (0.94-1.0)0.98-0.006
Conus magus2000.825 (0.768-0.873)0.932 (0.893-0.97)0.875 (0.838-0.908)0.8480.027
Conus maioensis490.959 (0.896-1.0)0.979 (0.927-1.0)0.969 (0.927-1.0)0.9670.002
Conus malabaricus81.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9770.023
Conus malacanus640.953 (0.899-1.0)0.984 (0.942-1.0)0.968 (0.932-0.993)0.9670.001
Conus maldivus550.945 (0.878-1.0)0.852 (0.754-0.93)0.897 (0.828-0.946)0.96-0.064
Conus mappa91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9170.083
Conus marchionatus800.988 (0.957-1.0)1.0 (1.0-1.0)0.994 (0.978-1.0)0.9920.001
Conus marielae121.0 (1.0-1.0)0.923 (0.714-1.0)0.96 (0.833-1.0)0.976-0.016
Conus marimaris260.923 (0.806-1.0)1.0 (1.0-1.0)0.96 (0.893-1.0)0.9540.006
Conus marmoreus431.0 (1.0-1.0)0.741 (0.635-0.857)0.851 (0.776-0.923)0.944-0.092
Conus martensi541.0 (1.0-1.0)0.947 (0.873-1.0)0.973 (0.932-1.0)0.970.003
Conus mascarenensis150.933 (0.778-1.0)1.0 (1.0-1.0)0.966 (0.875-1.0)0.9480.017
Conus mcbridei81.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus medoci191.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus medvedevi50.8 (0.333-1.0)1.0 (1.0-1.0)0.889 (0.5-1.0)0.963-0.074
Conus melvilli601.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus mercator2000.935 (0.896-0.966)1.0 (1.0-1.0)0.966 (0.945-0.983)0.9570.01
Conus merletti370.973 (0.903-1.0)0.973 (0.906-1.0)0.973 (0.925-1.0)0.978-0.005
Conus micropunctatus260.923 (0.809-1.0)0.857 (0.7-0.971)0.889 (0.783-0.963)0.929-0.04
Conus miles981.0 (1.0-1.0)0.99 (0.967-1.0)0.995 (0.983-1.0)0.9930.002
Conus miliaris740.986 (0.956-1.0)0.973 (0.932-1.0)0.98 (0.954-1.0)0.98-0.0
Conus milneedwardsi381.0 (1.0-1.0)0.974 (0.914-1.0)0.987 (0.955-1.0)0.992-0.005
Conus miniexcelsus110.909 (0.714-1.0)0.833 (0.583-1.0)0.87 (0.667-1.0)0.902-0.032
Conus minnamurra171.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus mitratus800.975 (0.936-1.0)0.987 (0.957-1.0)0.981 (0.955-1.0)0.992-0.011
Conus moluccensis860.942 (0.889-0.988)0.976 (0.937-1.0)0.959 (0.925-0.988)0.962-0.004
Conus monachus400.925 (0.826-1.0)0.949 (0.861-1.0)0.937 (0.871-0.987)0.958-0.021
Conus moncuri101.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus monicae210.952 (0.842-1.0)1.0 (1.0-1.0)0.976 (0.914-1.0)0.9690.007
Conus monile2000.895 (0.853-0.937)0.994 (0.983-1.0)0.942 (0.917-0.965)0.9250.017
Conus moreleti271.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9890.011
Conus mozambicus450.933 (0.854-1.0)0.977 (0.919-1.0)0.955 (0.903-0.99)0.96-0.005
Conus mucronatus470.957 (0.892-1.0)0.978 (0.921-1.0)0.968 (0.919-1.0)0.973-0.005
Conus muriculatus630.825 (0.722-0.911)0.929 (0.852-0.984)0.874 (0.803-0.931)0.918-0.044
Conus mus380.921 (0.818-1.0)1.0 (1.0-1.0)0.959 (0.9-1.0)0.976-0.017
Conus musicus970.959 (0.915-0.991)0.979 (0.947-1.0)0.969 (0.94-0.99)0.9670.002
Conus mustelinus1570.994 (0.979-1.0)0.981 (0.958-1.0)0.987 (0.974-0.997)0.99-0.003
Conus namocanus550.945 (0.882-1.0)0.897 (0.811-0.971)0.92 (0.863-0.967)0.937-0.017
Conus nanus331.0 (1.0-1.0)0.971 (0.895-1.0)0.985 (0.944-1.0)0.9790.006
Conus naranjus91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus natalis520.981 (0.933-1.0)0.981 (0.936-1.0)0.981 (0.95-1.0)0.9650.016
Conus navarroi120.917 (0.727-1.0)0.733 (0.5-0.933)0.815 (0.615-0.952)0.874-0.059
Conus neocostatus60.833 (0.454-1.0)1.0 (1.0-1.0)0.909 (0.625-1.0)0.8480.061
Conus neptunus910.989 (0.964-1.0)0.968 (0.93-1.0)0.978 (0.956-0.995)0.9780.001
Conus niederhoeferi90.889 (0.625-1.0)0.889 (0.667-1.0)0.889 (0.667-1.0)0.978-0.089
Conus nielsenae210.952 (0.846-1.0)0.69 (0.516-0.857)0.8 (0.655-0.906)0.912-0.112
Conus nigropunctatus250.96 (0.869-1.0)0.75 (0.586-0.893)0.842 (0.727-0.931)0.9-0.058
Conus nimbosus411.0 (1.0-1.0)0.976 (0.921-1.0)0.988 (0.959-1.0)0.998-0.01
Conus nobilis410.927 (0.833-1.0)0.95 (0.868-1.0)0.938 (0.873-0.987)0.967-0.028
Conus nobrei81.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus nocturnus201.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.990.01
Conus nodulosus81.0 (1.0-1.0)0.8 (0.499-1.0)0.889 (0.666-1.0)0.978-0.089
Conus norai101.0 (1.0-1.0)0.667 (0.416-0.917)0.8 (0.588-0.957)0.901-0.101
Conus nucleus121.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9540.046
Conus nussatella1140.982 (0.953-1.0)1.0 (1.0-1.0)0.991 (0.976-1.0)0.9870.004
Conus nux560.982 (0.94-1.0)0.965 (0.918-1.0)0.973 (0.941-1.0)0.98-0.006
Conus obscurus691.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus ochroleucus340.941 (0.857-1.0)0.97 (0.902-1.0)0.955 (0.9-1.0)0.971-0.016
Conus oishii730.986 (0.957-1.0)1.0 (1.0-1.0)0.993 (0.978-1.0)0.9930.001
Conus omaria2000.975 (0.952-0.995)0.956 (0.926-0.981)0.965 (0.947-0.982)0.9650.0
Conus orion160.938 (0.789-1.0)1.0 (1.0-1.0)0.968 (0.882-1.0)0.982-0.015
Conus papilliferus251.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9760.024
Conus parius241.0 (1.0-1.0)0.96 (0.87-1.0)0.98 (0.93-1.0)0.988-0.008
Conus parvatus421.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9870.013
Conus patae121.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus patricius410.976 (0.921-1.0)1.0 (1.0-1.0)0.988 (0.959-1.0)0.995-0.007
Conus paulae81.0 (1.0-1.0)0.889 (0.6-1.0)0.941 (0.75-1.0)0.953-0.012
Conus pauperculus61.0 (1.0-1.0)0.857 (0.5-1.0)0.923 (0.667-1.0)0.985-0.062
Conus peasei91.0 (1.0-1.0)0.9 (0.667-1.0)0.947 (0.8-1.0)0.961-0.013
Conus peli51.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9840.016
Conus penchaszadehi91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9890.011
Conus pennaceus2000.785 (0.727-0.842)0.952 (0.917-0.982)0.86 (0.821-0.897)0.8440.016
Conus pergrandis501.0 (1.0-1.0)0.98 (0.937-1.0)0.99 (0.968-1.0)0.9850.005
Conus perrineae161.0 (1.0-1.0)0.889 (0.722-1.0)0.941 (0.839-1.0)0.940.001
Conus pertusus1860.995 (0.983-1.0)0.995 (0.982-1.0)0.995 (0.986-1.0)0.9930.002
Conus petergabrieli71.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9730.027
Conus petestimpsoni91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9230.077
Conus pica960.948 (0.897-0.989)1.0 (1.0-1.0)0.973 (0.946-0.995)0.9650.008
Conus pictus261.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9890.011
Conus planorbis1800.817 (0.759-0.874)0.902 (0.851-0.945)0.857 (0.817-0.894)0.8240.033
Conus plinthis221.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus polongimarumai71.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus pongo120.917 (0.727-1.0)1.0 (1.0-1.0)0.957 (0.842-1.0)0.968-0.012
Conus poormani280.964 (0.88-1.0)0.931 (0.815-1.0)0.947 (0.875-1.0)0.955-0.007
Conus praecellens1160.974 (0.94-1.0)0.983 (0.954-1.0)0.978 (0.958-0.995)0.9620.016
Conus praelatus350.971 (0.909-1.0)0.829 (0.705-0.941)0.895 (0.806-0.963)0.975-0.08
Conus pretiosus471.0 (1.0-1.0)0.979 (0.933-1.0)0.989 (0.966-1.0)0.993-0.003
Conus princeps1100.945 (0.897-0.982)0.963 (0.925-0.992)0.954 (0.922-0.979)0.955-0.001
Conus proximus670.821 (0.726-0.904)0.902 (0.814-0.969)0.859 (0.793-0.919)0.895-0.035
Conus pseudimperialis151.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus pseudocardinalis91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus pseudocedonulli81.0 (1.0-1.0)0.8 (0.5-1.0)0.889 (0.667-1.0)0.977-0.088
Conus pseudonivifer620.984 (0.943-1.0)0.953 (0.893-1.0)0.968 (0.929-0.992)0.9570.012
Conus pulcher570.912 (0.829-0.98)0.912 (0.827-0.98)0.912 (0.85-0.962)0.935-0.023
Conus pulicarius1580.987 (0.969-1.0)0.981 (0.957-1.0)0.984 (0.969-0.997)0.9720.012
Conus purpurascens611.0 (1.0-1.0)0.924 (0.851-0.982)0.961 (0.919-0.991)0.973-0.012
Conus purus350.943 (0.842-1.0)0.917 (0.81-1.0)0.93 (0.852-0.984)0.972-0.042
Conus queenslandis191.0 (1.0-1.0)0.905 (0.75-1.0)0.95 (0.857-1.0)0.959-0.009
Conus quercinus1240.968 (0.932-0.992)0.952 (0.912-0.985)0.96 (0.934-0.981)0.975-0.015
Conus radiatus840.964 (0.924-1.0)0.988 (0.961-1.0)0.976 (0.952-0.995)0.9750.001
Conus ranonganus301.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus rattus880.932 (0.869-0.98)1.0 (1.0-1.0)0.965 (0.93-0.99)0.969-0.005
Conus raulsilvai111.0 (1.0-1.0)0.917 (0.714-1.0)0.957 (0.833-1.0)0.9480.008
Conus rawaiensis91.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus recluzianus261.0 (1.0-1.0)0.684 (0.542-0.828)0.812 (0.703-0.906)0.894-0.082
Conus recurvus260.846 (0.7-0.969)0.815 (0.654-0.945)0.83 (0.706-0.927)0.929-0.099
Conus reductaspiralis510.941 (0.868-1.0)0.98 (0.936-1.0)0.96 (0.914-1.0)0.978-0.018
Conus regius900.922 (0.861-0.974)0.976 (0.94-1.0)0.949 (0.912-0.98)0.9270.021
Conus regonae131.0 (1.0-1.0)0.929 (0.769-1.0)0.963 (0.869-1.0)0.993-0.03
Conus regularis490.939 (0.864-1.0)0.939 (0.861-1.0)0.939 (0.884-0.982)0.972-0.034
Conus reticulatus171.0 (1.0-1.0)0.85 (0.684-1.0)0.919 (0.812-1.0)0.984-0.065
Conus retifer371.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus richardsae71.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus richeri211.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus riosi150.867 (0.647-1.0)0.929 (0.733-1.0)0.897 (0.733-1.0)0.943-0.046
Conus rizali280.929 (0.815-1.0)0.897 (0.769-1.0)0.912 (0.818-0.98)0.947-0.035
Conus robini720.986 (0.952-1.0)0.973 (0.931-1.0)0.979 (0.952-1.0)0.983-0.003
Conus roeckeli200.9 (0.75-1.0)0.857 (0.684-1.0)0.878 (0.757-0.971)0.925-0.047
Conus rolani650.969 (0.923-1.0)0.969 (0.922-1.0)0.969 (0.933-1.0)0.9680.002
Conus roseorapum250.92 (0.8-1.0)1.0 (1.0-1.0)0.958 (0.889-1.0)0.9560.002
Conus rosiae160.938 (0.8-1.0)1.0 (1.0-1.0)0.968 (0.889-1.0)0.9430.025
Conus royaikeni371.0 (1.0-1.0)0.974 (0.912-1.0)0.987 (0.954-1.0)0.9680.018
Conus rufimaculosus361.0 (1.0-1.0)0.973 (0.912-1.0)0.986 (0.954-1.0)0.997-0.011
Conus samiae460.935 (0.857-1.0)0.935 (0.853-1.0)0.935 (0.873-0.981)0.96-0.025
Conus sandwichensis90.889 (0.667-1.0)0.889 (0.6-1.0)0.889 (0.667-1.0)0.96-0.071
Conus sanguinolentus81.0 (1.0-1.0)0.727 (0.428-1.0)0.842 (0.6-1.0)0.889-0.047
Conus santinii281.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus saragasae101.0 (1.0-1.0)0.909 (0.7-1.0)0.952 (0.824-1.0)0.971-0.019
Conus scabriusculus211.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9680.032
Conus scalaris171.0 (1.0-1.0)0.944 (0.81-1.0)0.971 (0.895-1.0)0.9360.036
Conus scalarissimus210.952 (0.842-1.0)1.0 (1.0-1.0)0.976 (0.914-1.0)0.9590.017
Conus scottjordani220.909 (0.765-1.0)1.0 (1.0-1.0)0.952 (0.867-1.0)0.978-0.025
Conus sculletti500.98 (0.933-1.0)0.98 (0.935-1.0)0.98 (0.948-1.0)0.987-0.007
Conus sertacinctus240.958 (0.857-1.0)0.958 (0.864-1.0)0.958 (0.889-1.0)0.9510.008
Conus shikamai201.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus sogodensis91.0 (1.0-1.0)0.818 (0.556-1.0)0.9 (0.714-1.0)0.96-0.06
Conus solangeae521.0 (1.0-1.0)0.981 (0.94-1.0)0.99 (0.969-1.0)0.9880.003
Conus solomonensis160.938 (0.8-1.0)0.652 (0.45-0.85)0.769 (0.606-0.9)0.892-0.123
Conus spectrum770.948 (0.892-0.988)0.986 (0.953-1.0)0.967 (0.931-0.993)0.9450.022
Conus spiceri41.0 (1.0-1.0)0.8 (0.25-1.0)0.889 (0.4-1.0)0.96-0.071
Conus splendidulus151.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus sponsalis870.989 (0.963-1.0)0.977 (0.943-1.0)0.983 (0.962-1.0)0.980.003
Conus spurius240.958 (0.864-1.0)0.92 (0.8-1.0)0.939 (0.863-1.0)0.956-0.017
Conus stainforthii211.0 (1.0-1.0)0.913 (0.778-1.0)0.955 (0.875-1.0)0.973-0.019
Conus stercusmuscarum560.982 (0.94-1.0)0.965 (0.909-1.0)0.973 (0.938-1.0)0.993-0.019
Conus stimpsoni421.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus stramineus200.95 (0.818-1.0)1.0 (1.0-1.0)0.974 (0.9-1.0)0.9130.061
Conus striatellus1140.895 (0.839-0.948)0.872 (0.808-0.932)0.883 (0.835-0.925)0.91-0.027
Conus striatus2000.965 (0.935-0.986)0.975 (0.953-0.995)0.97 (0.953-0.985)0.9670.002
Conus striolatus390.923 (0.829-1.0)0.9 (0.808-0.977)0.911 (0.833-0.969)0.952-0.041
Conus stupa121.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus stupella211.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus suduirauti141.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9930.007
Conus sugillatus280.893 (0.773-1.0)0.862 (0.727-0.968)0.877 (0.775-0.958)0.954-0.077
Conus sugimotonis490.959 (0.896-1.0)0.959 (0.892-1.0)0.959 (0.911-0.991)0.962-0.002
Conus sukhadwalai61.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9860.014
Conus sulcatus450.867 (0.759-0.956)0.951 (0.872-1.0)0.907 (0.833-0.965)0.9050.002
Conus sulcocastaneus890.978 (0.943-1.0)0.989 (0.96-1.0)0.983 (0.96-1.0)0.987-0.004
Conus suratensis961.0 (1.0-1.0)0.99 (0.966-1.0)0.995 (0.983-1.0)0.998-0.003
Conus suturatus230.913 (0.762-1.0)0.875 (0.714-1.0)0.894 (0.774-0.978)0.962-0.069
Conus swainsoni201.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9850.015
Conus sydneyensis101.0 (1.0-1.0)0.833 (0.6-1.0)0.909 (0.75-1.0)0.943-0.034
Conus tabidus270.926 (0.8-1.0)0.926 (0.808-1.0)0.926 (0.839-0.985)0.957-0.031
Conus tacomae210.952 (0.846-1.0)1.0 (1.0-1.0)0.976 (0.917-1.0)0.986-0.01
Conus taeniatus361.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus tagaroae301.0 (1.0-1.0)0.938 (0.844-1.0)0.968 (0.915-1.0)0.9650.002
Conus taitensis70.857 (0.5-1.0)0.857 (0.5-1.0)0.857 (0.571-1.0)0.949-0.092
Conus takahashii231.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9960.004
Conus telatus210.952 (0.84-1.0)0.87 (0.7-1.0)0.909 (0.8-0.98)0.9050.004
Conus tenuistriatus201.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9550.045
Conus terebra1060.972 (0.934-1.0)0.981 (0.951-1.0)0.976 (0.954-0.995)0.977-0.001
Conus tessulatus2000.98 (0.961-0.995)0.98 (0.958-0.995)0.98 (0.966-0.992)0.9630.017
Conus textile2000.695 (0.627-0.759)0.959 (0.924-0.987)0.806 (0.757-0.848)0.8010.005
Conus thailandis211.0 (1.0-1.0)0.913 (0.786-1.0)0.955 (0.88-1.0)0.972-0.017
Conus thalassiarchus2000.975 (0.952-0.995)1.0 (1.0-1.0)0.987 (0.975-0.997)0.9820.005
Conus therriaulti81.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9630.037
Conus thomae401.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus tiaratus141.0 (1.0-1.0)0.824 (0.631-1.0)0.903 (0.774-1.0)0.973-0.07
Conus timorensis161.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9940.006
Conus tinianus731.0 (1.0-1.0)0.924 (0.859-0.976)0.961 (0.924-0.988)0.960.0
Conus tostesi121.0 (1.0-1.0)0.8 (0.562-1.0)0.889 (0.72-1.0)0.919-0.03
Conus transkeiensis141.0 (1.0-1.0)0.933 (0.769-1.0)0.966 (0.869-1.0)0.993-0.028
Conus tribblei1390.957 (0.919-0.985)1.0 (1.0-1.0)0.978 (0.958-0.993)0.9670.011
Conus trigonus201.0 (1.0-1.0)0.952 (0.846-1.0)0.976 (0.917-1.0)0.9710.005
Conus trinitarius81.0 (1.0-1.0)0.889 (0.636-1.0)0.941 (0.778-1.0)0.9210.02
Conus tristensis150.8 (0.571-1.0)1.0 (1.0-1.0)0.889 (0.727-1.0)0.968-0.079
Conus trochulus560.982 (0.94-1.0)0.887 (0.803-0.962)0.932 (0.878-0.976)0.968-0.036
Conus tulipa901.0 (1.0-1.0)0.989 (0.96-1.0)0.994 (0.98-1.0)0.9930.002
Conus turritinus70.714 (0.25-1.0)0.5 (0.166-0.818)0.588 (0.182-0.833)0.886-0.298
Conus typhon300.9 (0.783-1.0)0.964 (0.875-1.0)0.931 (0.853-0.987)0.974-0.043
Conus unifasciatus281.0 (1.0-1.0)0.903 (0.792-1.0)0.949 (0.884-1.0)0.975-0.026
Conus urashimanus70.857 (0.5-1.0)0.667 (0.333-1.0)0.75 (0.444-0.947)0.894-0.144
Conus vanvilstereni80.75 (0.375-1.0)1.0 (1.0-1.0)0.857 (0.545-1.0)0.964-0.107
Conus variegatus240.917 (0.792-1.0)0.957 (0.857-1.0)0.936 (0.85-1.0)0.968-0.032
Conus varius1031.0 (1.0-1.0)0.99 (0.969-1.0)0.995 (0.984-1.0)0.998-0.002
Conus vautieri290.966 (0.885-1.0)0.933 (0.828-1.0)0.949 (0.878-1.0)0.96-0.011
Conus ventricosus730.89 (0.818-0.955)0.956 (0.902-1.0)0.922 (0.875-0.961)0.9220.0
Conus venulatus890.955 (0.909-0.99)0.904 (0.838-0.961)0.929 (0.886-0.963)0.941-0.012
Conus verdensis170.941 (0.8-1.0)1.0 (1.0-1.0)0.97 (0.889-1.0)0.977-0.008
Conus vexillum2000.915 (0.877-0.953)0.989 (0.972-1.0)0.951 (0.929-0.972)0.9430.007
Conus vezoi410.976 (0.917-1.0)0.976 (0.921-1.0)0.976 (0.936-1.0)0.99-0.014
Conus vezzaroi101.0 (1.0-1.0)0.588 (0.347-0.833)0.741 (0.516-0.909)0.924-0.184
Conus victor51.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus victoriae1570.981 (0.957-1.0)0.981 (0.957-1.0)0.981 (0.964-0.994)0.970.011
Conus vicweei261.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus vidua710.986 (0.953-1.0)0.909 (0.838-0.969)0.946 (0.904-0.981)0.955-0.009
Conus villepinii320.875 (0.759-0.974)0.966 (0.889-1.0)0.918 (0.836-0.981)0.945-0.027
Conus viola730.973 (0.933-1.0)0.973 (0.928-1.0)0.973 (0.944-0.994)0.9520.021
Conus violaceus61.0 (1.0-1.0)0.857 (0.5-1.0)0.923 (0.667-1.0)0.938-0.014
Conus virgatus600.983 (0.943-1.0)0.967 (0.909-1.0)0.975 (0.942-1.0)0.977-0.002
Conus virgo1040.981 (0.949-1.0)0.962 (0.925-0.991)0.971 (0.949-0.99)0.9510.021
Conus visagenus131.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
Conus vittatus510.922 (0.833-0.982)1.0 (1.0-1.0)0.959 (0.909-0.991)0.982-0.023
Conus vitulinus640.875 (0.786-0.949)0.7 (0.6-0.8)0.778 (0.695-0.847)0.881-0.104
Conus voluminalis1910.948 (0.914-0.977)0.978 (0.955-0.995)0.963 (0.941-0.981)0.9570.006
Conus vulcanus190.947 (0.833-1.0)0.857 (0.687-1.0)0.9 (0.788-0.978)0.954-0.054
Conus wallangra191.0 (1.0-1.0)0.95 (0.812-1.0)0.974 (0.897-1.0)0.985-0.011
Conus wittigi241.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus xanthocinctus201.0 (1.0-1.0)0.952 (0.857-1.0)0.976 (0.923-1.0)0.9570.019
Conus zandbergeni291.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9830.017
Conus zapatosensis230.957 (0.852-1.0)0.917 (0.792-1.0)0.936 (0.847-1.0)0.958-0.022
Conus zebra231.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9660.034
Conus zebroides201.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9950.005
Conus zeylanicus491.0 (1.0-1.0)0.961 (0.891-1.0)0.98 (0.942-1.0)0.99-0.01
Conus ziczac111.0 (1.0-1.0)0.917 (0.714-1.0)0.957 (0.833-1.0)0.957-0.001
Conus zonatus351.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)0.9920.008
Conus zylmanae261.0 (1.0-1.0)1.0 (1.0-1.0)1.0 (1.0-1.0)1.00.0
select ValidAphiaId, max(AcceptedSpecies)  from DWH.Species s where AcceptedGenus = 'Conus'
 AND AcceptedSpecies <> '' AND LOCATE(' ', AcceptedSpecies) = 0 and ValidAphiaId is not null and s.OnlyFossil = 0
 group by ValidAphiaId 
 ORDER BY max(AcceptedSpecies)
 select s.AcceptedSpecies, count(*) cnt  from DWH.Species s , DWH.ShellRecord sr , DWH.ShellImages si , DWH.ImageTransform it 
  Where s.SpeciesHash = sr.SpeciesHash AND sr.ShellHash = si.ShellHash AND si.ImageHash = it.ImageHash 
   AND s.AcceptedGenus = 'Conus'
  group by s.AcceptedSpecies