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Abstract

Convolutional Neural Networks (CNNs) are increasingly used in biological image analysis for tasks
like species identification, but their "black box" nature limits interpretability and trust. This study
addresses this challenge by employing Explainable Al (XAl) techniques, specifically Gradient-
weighted Class Activation Mapping (Grad-CAM), to unveil the morphological insights utilized by a
hierarchical CNN trained to classify species within the mollusk genus Harpa. Using a dataset of 5837
shell images across 13 Harpa species, an EfficientNetV2B2-based model achieved high validation
accuracy (96%).

Grad-CAM was applied to visualize the image regions most influential in the CNN's classification
decisions. Analysis of the resulting heatmaps revealed that the model often focuses on morphological
features consistent with traditional taxonomic descriptions, such as shoulder spines, parietal callus
patterns, and body whorl coloration. However, the CNN occasionally prioritized different features than
human experts might, suggesting potential alternative diagnostic cues.

Furthermore, t-SNE visualization of the Grad-CAM heatmaps demonstrated that the CNN employs
distinct, view-dependent (apertural vs. dorsal) attention strategies for different species, with varying
degrees of overlap indicating shared visual features or potential confusion points. These findings
validate the CNN's performance by linking its decisions to specific morphological characteristics,
enhance the trustworthiness of automated identification, and highlight the potential of XAl to reveal
nuanced identification strategies and potentially novel biological insights from image data.

These findings suggest new opportunities for integrating image-based learning with genetic and
ecological data. Such multi-modal approaches promise to deepen our understanding of how
phenotype, genotype, and environment interact to shape biodiversity.
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Introduction

The application of Convolutional Neural Networks (CNNs) has experienced a significant surge in the realm of
biological image analysis. These deep learning models have demonstrated remarkable capabilities in tasks
such as classifying species, detecting diseases, and segmenting various organisms, spanning the domains of
botany, zoology, and marine biology [1, 3, 4]. Despite their high accuracy, the intricate internal workings of
CNNs often remain opaque, functioning as "black boxes" that provide predictions without clear explanations of
their decision-making processes. This lack of transparency poses a challenge, particularly in critical
applications where understanding the reasoning behind a prediction is paramount for building trust and
ensuring reliability [2]

To address this challenge, the field of Explainable Al (XAl) has emerged, focusing on developing techniques that
can shed light on the decision-making processes of complex models like CNNs . By providing insights into why a
CNN makes a particular prediction, XAl methods facilitate debugging, help identify potential biases in training data,
and ultimately increase the interpretability of these powerful tools in biological research and practical applications .
Among the various XAl techniques, Gradient-weighted Class Activation Mapping (Grad-CAM) [6] and saliency
maps [5] have gained prominence for their ability to visualize the regions in an input image that are most influential
in the CNN's output [3, 4].

Morphological features, encompassing the shape, structure, and texture of organisms, are fundamental in
biological studies . These characteristics play a crucial role in species identification, disease detection, and
understanding ecological relationships. Traditionally, the analysis of these features often involved manual
measurements or intricate feature engineering. The advent of CNNs, coupled with interpretability techniques like
Grad-CAM and saliency maps, presents an opportunity to automate and enhance the extraction and analysis of
morphological features from biological images.

Our previously described hierarchical Convolutional Neural Network (CNN) [Hierarchical CNN to identify Mollusca],
implemented within the Identifyshell.org platform, classifies Mollusca across various taxonomic levels. Within this
hierarchy, the classification of the genus Harpa provides a valuable case study. Known for its unique and often
intricate shell morphology, Harpa presents distinct visual features that are well-suited for demonstrating
interpretability techniques like Gradient-weighted Class Activation Mapping (Grad-CAM).

In this context, Grad-CAM is employed to visualize the specific regions within shell images that contribute most
significantly to the CNN's classification outcome for Harpa. Analysis of the resulting heatmaps allows for the
identification of key morphological characteristics—for instance, distinct parietal callus shapes, patterns on the
body whorl, or the prominence and spacing of axial ribs (varices)—that the model prioritizes. This visualization
serves a dual purpose: it offers empirical validation by highlighting the features learned by the CNN, and critically, it
enhances the interpretability and trustworthiness of the automated identifications provided by the system, offering
potential insights into the salient diagnostic features for the genus.

Methods

Data Acquisition

Shell images were collected from many online resources, from specialized websites on shell collecting to institutes
and universities. One of the largest collections of shell images is available on GBIF. Also online marketplace such
as ebay contain a large collection of images. Other large shell image collections are available at , Malacopics,
Femorale and Thelsica. A shell dataset created for Al is available [8].
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Some online resources have facilities to download images, but most websites require a specialized webscraper.
Scrapy , an open source and collaborative framework for extracting the data from websites, is used to create a
custom webscraper to extract images and their scientific names. All data was stored in a MySQL database before
further processing was performed.

The dataset for the Harpa CNN model comprises 5837 shell images representing 13 Harpa species (see table I).
There are 14 species in the genus Harpa (WoRMS or MolluscaBase), but not enough images were found for one
species. Species with less than 25 images were removed (see Minimum number of images needed for each
species).

Table I: Harpa species with enough images

Species # images
Harpa harpa (Linnaeus, 1758) 777
Harpa doris Rdding, 1798 294
Harpa cabriti P. Fischer, 1860 747
Harpa goodwini Rehder, 1993 60
Harpa kolaceki T. Cossignani, 2011 45
Harpa davidis Réding, 1798 216
Harpa costata (Linnaeus, 1758) 213
Harpa kajiyamai Habe, 1970 468
Harpa gracilis Broderip & G. B. Sowerby I, 1829 38
Harpa crenata Swainson, 1822 218
Harpa amouretta Réding, 1798 672
Harpa articularis Lamarck, 1822 883
Harpa major Réding, 1798 1228

Image Pre-processing

All names were checked against WoRMS or MolluscaBase for their validity. Names that were not found in
WoRMS/MolluscaBase were excluded for further processing. While a large part of this data quality step was
automated, a manual verification (time-consuming) step was also included. In addition to text-based quality control,
both automated and manual preprocessing steps were applied to the images. Shells were detected in all images
and cut out of the original image, having only 1 shell on each image. Other objects on the raw images (labels,
measures, hands holding a shell, etc.) were removed. When appropiate the background was changed to a uniform
black background. A square image was made by padding the black background. All shells were resized (400 x 400
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pX).

Model Training

For this study, Python (version 3.10.12) was used. The EffiecientNetV2B2 pre-trained models were used. (see
Identifying Shells using Convolutional Neural Networks: Data Collection and Model Selection) Table 2 lists the
hyperparameters. The models were trained using a batch size of 64 samples, and the number of epochs used was
50. The learning process was initiated with an initial learning rate of 0.0005 and the Adam optimiser was utilised for
efficient weight updates. Two callbacks were used, one to monitor the validation loss and decreasing the learning
rate , a second callback for early stopping. Both callbacks were applied to prevent the model from over-fitting.
Fine-tuning the model was performed as described before. The top 30 layers of the model were unfrozen.

Table Il. Hyperparameters

Hyperparameter = Value Comments
Batch Size 64
Epochs 50 The number of epochs determines how many times the entire training

dataset is passed through the model. Because early-stopping is used, often
less than 50 epochs were needed.

Optimizer Adam The optimizer determines the algorithm used to update model weights
during training.

Learning Rate 0.0005 The validation loss was monitored and adjusted
reduce_lr =
keras.callbacks.ReduceLROnPlateau(monitor="'val_loss',
factor=0.1, patience=3, min_lr=1e-6)

Loss Categorical
Cross-
entropy

Regularization 0.001

Evaluation Metrics

The evaluation of the performance of the CNN models was carried out by using standard metrics for classification:
accuracy, precision, recall, and F1 score, which are defined by [7] in terms of the number of FP (false positives);
TP (true positives); TN (true negatives); and FN (false negatives) as follows:

Accuracy = TP+ TNTP + TN + FN + FP

Precision=TP TP + FP

Recall=TP TP + FN
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F 1 - Score = 2 x &InvisibleTimes Precision &InvisibleTimes Recall Precision + Recall

Python library sklearn.metrics was used to calculate these metrics.

Results

Model Training Results

The Harpa CNN model shows a good performance with a 96% validation accuracy, indicating its excellent ability to
generalize to unseen data. A summary of the results of the overall model is given in table IIl.

Table Ill. Training Results

Metrics Value Comments
Validation accuracy 0.961
Validation loss 0.187
Training accuracy 0.977
Training loss 0.141
Weighted Average Recall 0.964
Weighted Average Precision 0.964
Weighted Average F1 0.964

The validation loss of 0.187 confirms effective generalization without significant overfitting. Additionally, the training
accuracy reached 97.7%, and the training loss was 0.141, both of which reflect efficient learning and optimization
during the training process. Furthermore, the model showed balanced predictive capabilities across precision,
recall, and the F1 score, each yielding 96.4%, highlighting the overall robustness and reliability of the classification
performance. These results collectively confirm that the Harpa CNN model effectively captures distinguishing
features necessary for accurate predictions. Metrics for each species are shown in table IV.

Table IV. Metrics for each species

Species Recall Precision F1

Harpa harpa (Linnaeus, 1758) 0.946 0.953 0.949
Harpa doris Réding, 1798 0.968 0.968 0.968
Harpa cabriti P. Fischer, 1860 0.924 0.938 0.931
Harpa goodwini Rehder, 1993 0.882 1.000 0.938
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Species Recall Precision F1

Harpa kolaceki T. Cossignani, 2011 0.857 1.000 0.923
Harpa costata (Linnaeus, 1758) 1.000 1.000 1.000
Harpa kajiyamai Habe, 1970 0.989 0.989 0.989
Harpa gracilis Broderip & G. B. Sowerby I, 1829 1.000 0.778 0.875
Harpa crenata Swainson, 1822 0.961 0.980 0.970
Harpa amouretta Rdding, 1798 0.988 0.982 0.985
Harpa articularis Lamarck, 1822 0.975 0.981 0.978
Harpa major Réding, 1798 0.962 0.944 0.953

The Harpa CNN model showed strong and consistent classification performance across most species, with metrics
varying slightly depending on species and training sample sizes. The model achieved perfect or near-perfect
results for species with distinct visual features, such as Harpa costata, with 100% recall, precision, and F1, and
Harpa kajiyamai, with consistent metrics of 98.9%. High accuracy was also noted in species with larger datasets
like Harpa major (recall: 96.2%, precision: 94.4%, F1: 95.3%) and Harpa articularis (recall: 97.5%, precision:
98.1%, F1: 97.8%), reflecting reliable predictive ability likely supported by abundant training examples.

Some species with fewer training examples exhibited more variability. For instance, Harpa gracilis (recall: 100%,
precision: 77.8%, F1: 87.5%), despite high recall, showed lower precision, suggesting challenges in avoiding false
positives, likely due to the limited number of images. Conversely, Harpa goodwini (recall: 88.2%, precision: 100%,
F1:93.8%) and Harpa kolaceki (recall: 85.7%, precision: 100%, F1: 92.3%) had perfect precision but slightly lower
recall, indicating the model was cautious but occasionally missed identifying these species correctly, possibly
reflecting limited training data.

Other species demonstrated balanced and robust results, such as Harpa doris (recall, precision, and F1 each at
96.8%), Harpa crenata (recall: 96.1%, precision: 98.0%, F1: 97.0%), and Harpa amouretta (recall: 98.8%,
precision: 98.2%, F1: 98.5%), showing strong overall classification capabilities. The moderate performance
observed for Harpa cabriti (recall: 92.4%, precision: 93.8%, F1: 93.1%) and Harpa harpa (recall: 94.6%, precision:
95.3%, F1: 94.9%) indicated stable yet slightly less precise results, even with ample training data.

Overall, the Harpa CNN model effectively captured distinguishing characteristics for each species, demonstrating
robust predictive performance while showing slight variability influenced by the distinctiveness of features and, to
some extent, the number of training samples available per species.

Confusion matrix

The confusion matrix, shown in figure 1, confirms the strong overall performance of the Harpa CNN model, while
highlighting specific areas of confusion among certain species. The matrix clearly illustrates high accuracy along
the diagonal, indicating correct classifications, consistent with previously reported precision, recall, and F1 scores.
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Figure 1: Confusion matrix Shows the model’s per-species classification counts, with true labels on the y-axis
and predicted labels on the x-axis. Nearly every species lies strongly along the diagonal (high true-positive counts),
confirming overall accuracy. Off-diagonal “bleed” occurs primarily for species with fewer training images (e.g.
Harpa kolaceki, Harpa goodwini) or those with similar morphology (e.g. Harpa cabriti vs. Harpa harpa), matching
their lower recall or precision in Table IV

Most species have clear, distinct diagonal values, confirming excellent identification. For instance, species with
strong performance metrics such as Harpa costata, Harpa kajiyamai, and Harpa amouretta are accurately
classified, with high counts on the diagonal and few or no misclassifications.

However, some notable confusions are present. A small number of images from Harpa kolaceki and Harpa
goodwini, both species with fewer training examples, are incorrectly classified, confirming the previously described
lower recall for these species. Similarly, the confusion matrix reveals why Harpa gracilis exhibited lower precision
—despite high recall—with several instances from other classes incorrectly predicted as gracilis.
Misclassifications primarily occur between visually similar species or species with limited training images. For
example, a few images of Harpa cabriti and Harpa harpa, both species with relatively large datasets, were
occasionally confused, indicating visual similarities challenging the CNN model’s discrimination capabilities.
Overall, the confusion matrix supports earlier findings, highlighting strong accuracy across most classes while
clarifying specific areas of minor confusion, typically among visually similar species or species with fewer training
examples.

Note that Harpa davidis is not used for training despite sufficient images available. This species was removed
because it was often confused with Harpa major. More than 20% of all Harpa davidis was confused with Harpa
major (and vice versa).

Grad-CAM

A GRAD-CAM visualisation technique was used to understand the prediction process and emphasise the
intriguing areas of the shell pictures that determine the final decision.The visual explanation provides an overview
by generating a heatmap where pixels with high to low intensity are indicated in red, yellow, green and blue [6].
This technique can be used to determine whether the model accurately predicts the species.
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A few typical examples are given in figure 2.

Species Original Image Heatmap Superimposed image

Harpa
amouretta
Réding, 1798
Apertural view

Harpa
articularis
Lamarck, 1822
Apertural view

Harpa cabriti P.
Fischer, 1860
Apertural view

Harpa costata
(Linnaeus,
1758)
Apertural view
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Species Original Image Heatmap Superimposed image

Harpa costata
(Linnaeus,
1758)

Dorsal view

Figure 2: Typical Grad-CAM Examples Presents five exemplar shell images (originals, raw heatmaps, and
heatmap-overlays) for different Harpa species in apertural and dorsal views. Red/orange regions indicate where
the CNN focused most: e.g. Harpa amouretta’s inner-lip chestnut blotches in the apertural view, Harpa articularis’s
shoulder denticles in dorsal view, and so on, demonstrating that the model often aligns with known diagnostic traits

Grad-CAM - Species Average

For each species and viewpoint (apertural and dorsal views), average heatmaps were generated to visualize
regions most influential for the CNN model's species identification. Each visualization consists of two images: the
left image displays the heatmap intensity alone, clearly indicating activation patterns. The right image overlays this
heatmap onto an actual shell image of the corresponding species and viewpoint. In these visualizations, areas
highlighted in red or orange represent regions with the highest activation by the CNN model, meaning these
specific areas of the shell contain the critical features the model uses to distinguish between species. In the
following section, we provide detailed descriptions of these heatmaps for each species, discussing how the
activated regions align with diagnostic features described in the literature for accurate identification of Harpa
species.

Harpa amouretta

Based on the Grad-CAM
visualizations, the Convolutional
Neural Network appears to
utilize distinct morphological
features of Harpa amouretta
depending on the perspective
presented. When analyzing the
apertural view, the model shows
strong activation concentrated
on the lower portion of the shell,
particularly around the
columellar area and the siphonal
notch. This focus aligns
remarkably well with the
description's emphasis on the
Figure 3: Harpa amouretta - Apertural view characteristic chestnut blotches
found on the inner lip —
specifically the central blotch
near the parietal/columellar

Image with Heatmap Overlay
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Figure 4: Harpa amouretta - Dorsal view

Image with Heatmap Overlay

juncture and the basal blotch
near the anterior canal — which
are key diagnostic features for
this species.

Conversely, when presented
with the dorsal view, the
heatmap indicates that the CNN
directs its attention primarily to
the flank of the shell, with high
activation along the left side
covering the body whorl and
extending partially onto the
lower spire. This dorsal focus
strongly suggests the model is
leveraging the distinctive
surface details described for H.
amouretta [8]. The most likely

features driving this activation are the complex color patterns, such as the festooned or zigzag chestnut
markings within the intercostal spaces, as well as the numerous fine, paired chestnut lines decorating the axial
ribs themselves. Additionally, the structural characteristics of the ribs and the shoulder angulation in this highly
activated region might also contribute to the model's identification process from this perspective.

In essence, the CNN effectively identifies Harpa amouretta by focusing on different but equally significant
diagnostic traits highlighted in its morphological description: the unique ventral blotches visible from the front,
and the intricate color patterns and rib structures prominent on its dorsal flank.

Harpa articularis
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Figure 5: Harpa articularis - Apertural view
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An important diagnostic feature
for Harpa articularis is that the
entire columnella is typically
covered by a large, dark blotch,
as documented in the literature
[8]. Examining the heatmaps
generated for this species
reveals insights into how the
CNN model aligns with known
identification criteria.

When examining the apertural
perspective, the model
demonstrates strong activation
concentrated primarily on the
upper portion of the shell,
encompassing the spire and the
critical shoulder area of the body
whorl. This focus aligns well with
the described morphological
complexities in this region,
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particularly the strong, angular
denticulation of the ribs at the
shoulder and the potential

Image with Heatmap Overlay
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0 presence of a shallow groove
just below it. Intriguingly, the
heatmap shows minimal
activation over the lower ventral
surface, indicating that the large,
uninterrupted chestnut-colored
splotch covering the parietal and
columellar calluses — a key
diagnostic feature for human
observers — is not the primary
focus for the CNN in this view.
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Figure 6: Harpa articularis - Dorsal view .
In contrast, the dorsal view

heatmap highlights the overall
shell shape as influential in recognizing this species, with the highest activation specifically concentrated near
the basal portion of the outer lip. This indicates that the CNN utilizes both detailed anatomical features, such
as distinctive coloration patterns, as well as overall morphological characteristics to reliably identify H.
articularis.

The crucial difference in how the model identifies H. amouretta and H. articularis lies in the type and location
of features it prioritizes. Harpa amouretta is recognized primarily through its distinctive color patterns, with the
CNN focusing on the apertural blotches situated low on the shell and the intricate patterns decorating its mid-
dorsal flank. Conversely, the identification of Harpa articularis appears driven more by structural features; the
model concentrates on the shoulder complexity high on the aperture and the shell's form at the dorsal base
and shoulder, while notably overlooking the species' major ventral color patch. This divergence indicates the
CNN has learned to differentiate them by prioritizing different kinds of visual cues — leveraging prominent color
patterns for amouretta and specific structural shapes and details for articularis.

Harpa cabriti

The Grad-CAM heatmaps for
Harpa cabriti correspond closely
with the key shell characteristics
detailed in the provided species
description, indicating the
Convolutional Neural Network
leverages biologically significant
features for identification.
According to the description [8,
9], defining traits include
prominent ribs bearing distinct
lamellar projections, particularly
at the shoulder, and
characteristic color patterns
involving blotches, bands, and
festoon-like lines.
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Figure 7: Harpa cabriti - Apertural view
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Examining the apertural view,
the heatmap shows strong
activation concentrated around
the upper portion of the body
whorl, near the junction with the
outer lip. This region accurately
encompasses the location of the
strong, spinose projection on the
ribs at the shoulder and also
coincides precisely with the
position of the large upper
chestnut spot described on the
parietal wall. This alignment
reinforces that the model
recognizes both the crucial
structural detail of the shoulder
spine and the specific color marking near the aperture's top as vital identifiers from this perspective.
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Figure 8: Harpa cabriti - Dorsal view

Similarly, the dorsal view heatmap displays pronounced activation across the central upper body whorl and
shoulder region, highlighting the ribs and the intervening spaces. This focus corresponds directly with the
described sculptural and color features visible from the back: specifically, the ribs bearing their lamellar,
spinose projections at the shoulder and the distinctive dorsal color scheme, including the revolving bands
created by alternating blotches and white stripes on the ribs and the festoonlike chestnut markings within the
interspaces.

Overall, the CNN's activated regions in both views align strongly with Harpa cabriti's described morphological
and color features, particularly the structurally complex and pattern-rich shoulder area. This demonstrates that
the model effectively identifies the species by focusing on a combination of biologically meaningful
characteristics, namely the shoulder spines and view-specific color patterns.

Harpa costata

In the apertural view heatmap,
the strongest activations appear
on the upper portion of the body
whorl, especially around the
shoulder angle and adjacent
regions. This precisely matches
the shell description, which
highlights distinctive ribs with
triangular, spine-like projections
at the shoulder forming a
subsutural channel. The
heatmap confirms that the
model strongly relies on these
prominent ribs and projections to
Figure 9: Harpa costata - Apertural view distinguish H. costata.
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Figure 10: Harpa costata - Dorsal view

cues for the CNN model.

heatmap strongly emphasizes
the ribs across the central and
peripheral body whorl areas,
consistent with the shell
description mentioning
numerous crowded, lamellar ribs
with distinct spine-like
projections. Additionally, the
activated regions correspond
closely to the described
coloration patterns, such as
chestnut spots and bands of
varying darker shades between
the ribs, confirming that these
color and rib patterns together
provide critical identification

Overall, the visual examination of both heatmaps confirms strong alignment with the morphological and color
features detailed in the shell's literature description [8], providing clear visual evidence that the CNN model
uses biologically meaningful and well-defined shell characteristics to identify Harpa costata.

Harpa crenata

Image with Heatmap Overlay
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Figure 11: Harpa crenata - Apertural view

Comparing the provided shell
description of Harpa crenata
with the visual heatmaps reveals
a clear correspondence between
morphological characteristics
detailed in the literature and the
regions activated by the CNN
model.

In the apertural view heatmap,
significant activation occurs
mainly along the left side of the
body whorl. This region
corresponds to the pronounced
curvature and the external color
pattern described in the
literature, including axial
chestnut markings and
distinctive coloration between
the ribs [8]. Thus, the CNN
strongly relies on these visual
and color features present on
the left side of the shell for
accurate species identification.

In the dorsal view heatmap,
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strong activation is observed
prominently at the shoulder and
basal portions of the body whorl.
These activated areas directly
match the shell description
highlighting an angulated
shoulder with triangular, lamellar
spines and characteristic basal
curvature. The pronounced
activation on these
morphological features suggests
that the CNN effectively
identifies H. crenata by detecting
the distinctive spines, ribs, and
shape described in the
literature.

Overall, this corrected analysis clearly confirms the alignment between the CNN model’s activated heatmap
regions and key morphological and coloration features described for Harpa crenata, indicating the model's
reliance on biologically meaningful shell traits for species identification.

Harpa doris

Figure 13: Harpa doris - Apertural view
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Comparing the provided shell
description of Harpa doris with
the visual heatmaps reveals a
strong correspondence between
the described morphological
characteristics and the activated
regions identified by the CNN.

The apertural view heatmap
demonstrates strong activation
on the left side of the body
whorl, opposite the aperture,
closely aligning with the shell's
described features. The
description emphasizes distinct
ribs marked by brown
interrupted lines, narrow bands
with chestnut markings, and
characteristic bicolored bands
consisting of orange and
purplish-pink blotches, all
predominantly visible along this
region. These visual and color
features are therefore clearly
crucial cues used by the CNN
model for accurate species
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Figure 14: Harpa doris - Dorsal view

identification decisions.

Harpa harpa

Image with Heatmap Overlay

identification.

In the dorsal view heatmap,
activation occurs strongly along
the left side of the shell,
corresponding to the position of
the outer lip when viewed
dorsally. This activated region
closely matches the literature
description, particularly the
presence of prominent triangular
spines at the shoulder
angulation and distinct rib
patterns. These structural
features along the outer lip
region, as described, seem to
strongly inform the CNN's
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Figure 15: Harpa harpa - Apertural view
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The visual heatmaps for Harpa
harpa strongly align with the
described morphological and
coloration features of this
species. In the apertural view
heatmap, significant activation
occurs prominently at the spire
and shoulder region of the body
whorl. This corresponds
precisely with the literature
description emphasizing the
stout, broadly ovate shell shape
with a notably flattened
subsutural ramp and distinct
angulation marked by strong
spines at the shoulder of the
body whorl. Additionally, a
secondary activation near the
columellar region corresponds
well with the described presence
of distinct reddish-brown
blotches on the ventral side and
around the columellar lip,
suggesting the CNN effectively
utilizes these color patterns for
species recognition.

In the dorsal view heatmap, high
activation is observed at two
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Figure 16: Harpa harpa - Dorsal view

Image with Heatmap Overlay

important areas: the shoulder of
the body whorl and the basal
region near the outer lip. The
activation at the shoulder closely
matches the shell description
emphasizing strong, flattened
ribs crossed by distinctive fine
dark lines grouped together. The
activated basal area
corresponds clearly to described
patterns of reddish-brown
blotches, wavy axial stripes, and
spiral bands with chestnut spots
—features that collectively
represent key visual cues for the
CNN.

Overall, both heatmaps indicate that the CNN model's identification process for Harpa harpa strongly relies on
biologically relevant, visually distinct shell features described in the literature, particularly the pronounced
shoulder structure, distinctive ribs, and characteristic coloration patterns.

Harpa kajiyamai
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Figure 17: Harpa kajiyamai - Apertural view
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Comparing the provided shell
description of Harpa kajiyamai
with the visual heatmaps
demonstrates a clear
correspondence between the
literature and the CNN
activations.

The apertural heatmap shows
strong activation primarily on the
left side of the body whorl. This
activated region aligns closely
with the literature's description
highlighting the presence of
distinctive coloration patterns,
including bands with dark lines
grouped in pairs or triplets, and
the conspicuous ribs sharply
angled at the shoulder. This
suggests that the CNN model
accurately identifies the species
using these rib features and
distinct color patterns on the
external surface of the body
whorl.

In the dorsal heatmap, activation
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prominently occurs on the left
side, corresponding clearly with
the outer lip region in dorsal
orientation. This activation
strongly matches features
emphasized in the description,
including the sharply acuminate
ribs at the shoulder, their
flattened reflections near the
base, and distinctive spiral
banding coloration patterns. The
strong activation along the
dorsal side's outer lip confirms
that the CNN recognizes and
relies upon these well-described
morphological and coloration
features for accurate

The CNN heatmaps align closely with the defining morphological and coloration features documented for
Harpa kajiyamai, indicating the model’s reliance on biologically significant and visually distinctive shell traits

described explicitly in literature [8].

Harpa major
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Figure 19: Harpa major - Apertural view
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Comparing the provided shell
description of Harpa major with
the visual heatmaps reveals a
strong correspondence between
the CNN model’s activated
regions and the key features
described in literature, with
some interesting details worth
noting.

In the apertural view heatmap,
significant activation occurs in
two distinct regions: the center
of the body whorl and along the
middle of the outer lip. This
aligns closely with the
literature’s emphasis on
prominent ribs and their
characteristic coloration,
including variable chestnut lines
and the notable, centrally
divided chestnut blotch covering
the parietal wall. The centrally
activated region corresponds
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particularly well with the
described chestnut blotch
pattern, a key diagnostic
characteristic for identifying this
species.

Image with Heatmap Overlay

[~

In the dorsal view heatmap,
activation is most prominent on
the right side, corresponding to
the body whorl curvature and
strongly emphasizing the broad,
heavy ribs described as
distinctly angulated at the
shoulder and contributing to the
characteristic shell outline.
Additionally, activation on the
left side, corresponding to the
dorsal side of the outer lip, aligns well with described color patterns and the structural outline of the shell’s
aperture. Thus, the CNN model clearly utilizes both the ribs' structural prominence and their associated color
patterns for identification.
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Figure 20: Harpa major - Dorsal view

Visualization of identification strategies used for each species

Based on our analysis of the average Grad-CAM heatmaps, we characterized the dominant visual strategy the
CNN employs to identify each Harpa species studied. It became clear that the model utilizes distinct approaches
for different species, rather than relying on a single, uniform strategy across the genus. A significant variation
observed lies in the type of features prioritized by the network; in some instances, color patterns appear
paramount for identification, while for other species, aspects of the shell's structure command more of the model's
attention. For example, recognizing Harpa amouretta seemed strongly linked to its specific color patterns, such as
apertural blotches and dorsal markings. Conversely, identifying Harpa articularis and Harpa cabriti involved a
greater focus on structural features, particularly the complexities of the shoulder region, although specific color
cues clearly contributed to the strategy for H. cabriti as well.

To visualize these different strategies we have used t-SNE [12]. -SNE is a visualization technique to help
understand the different attention strategies of the Harpa CNN model uses for each Harpa species, based on their
Grad-CAM heatmaps. It converts the heatmap data into a 2D plane while attempting to keep similar heatmap
patterns close together. Each species and view is colour coded to allow to see the different strategies used for
each species. Distinct separation between different colored groups visually confirms that the model employs
different attention patterns for those respective species. Conversely, areas where different colors mix and overlap
highlight instances where similar visual strategies were used across species, potentially indicating shared features
or sources of confusion for the model.

Furthermore, this visualization can reveal variations within a single species. If points representing a single species,
indicated by a single color, form multiple distinct clumps within the plot, this provides strong visual evidence that
the model utilizes alternative strategies to identify even that one species across different images. The density and
spread of points for each color also offer insights into the consistency or variability of the strategy used for each
species. In essence, t-SNE provides a visual map of the model's learned attention patterns, allowing you to
explore how identification strategies compare across species and whether diverse strategies exist within them.
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Figure 21: t-SNE Visualization of 10 Harpa species heatmaps - Apertural viewA two-dimensional embedding
of Grad-CAM maps from the apertural view, with each point colored by species. Some species (e.g. Harpa
articularis in yellow; Harpa cabriti in gray) form tight, distinct clusters, indicating unique attention patterns. Others
(notably Harpa major, Harpa doris, Harpa costata, Harpa harpa, Harpa amouretta, Harpa crenata) overlap heavily
in the left/central region, revealing similar CNN strategies and potential confusion groups.

This t-SNE visualization maps the similarities between Grad-CAM heatmaps generated from apertural views of ten
different Harpa species, with each point colored according to its true species label. The plot reveals an underlying
structure rather than random scatter, indicating that the model's attention patterns have detectable similarities and
differences. However, while there are visible grouping tendencies, the visualization is also characterized by
significant overlap and mixing between the colors representing many species, alongside noticeable variability
within individual species categories.

Several species demonstrate relatively unique attention patterns. Harpa articularis, represented by Yellow/Olive
points, forms a cohesive cluster in the bottom right, suggesting a distinct strategy. Harpa cabiriti, shown as Grey
points, also groups effectively in the middle-right, indicating a fairly unique focus. To a lesser extent, Harpa
kajiyamai (Brown) shows clustering tendencies in the middle-right, suggesting some distinction in the strategy.

Conversely, there is substantial mixing in the left and central parts of the plot. Harpa major, represented here by
Cyan / Light Blue points, is widely distributed and heavily overlaps with Harpa doris (Blue), Harpa costata
(Orange), Harpa harpa (Green), Harpa amouretta (Red), and Harpa crenata (Purple). This indicates that the visual
attention patterns used for H. major share significant similarities with those used for these other species in the
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apertural view. Harpa amouretta (Red) and Harpa crenata (Purple) are particularly mixed within this larger group

on the left side.

This extensive overlap suggests that the attentional strategies employed by the model for these particular species
share significant visual similarities when viewed from the aperture, potentially indicating shared important features
or areas where the model might find differentiation challenging. Furthermore, the spread observed for most species
suggests considerable intra-species variation in the model's focus across different images.

In summary, this t-SNE analysis visually confirms that while the CNN has learned distinct apertural attention
patterns for species like Harpa articularis and Harpa cabriti, the strategies used for many other species appear
less differentiated and show considerable resemblance to one another, particularly centering around the patterns
associated with Harpa major.

Dimensian 2

-20

t-SNE on Grid Features

esesesesse

doris - Dorsal (back)
costata - Dorsal {back)
harpa - Dorsal (back)

amouretta - Dorsal (back) ry L "% * .
crenata - Dorsal (back) . L. -
kajiyamai - Dorsal (back) K ) -
goodwini - Darsal (back} . 5, .
cabriti - Dorsal (back) ° .. R Fo . N
articularis - Dorsal {back) o * ., LA ] . e Y
major - Dorsal (back) o * N hat”, s . . Y .. .
. . * ° LY Nt e see®
. . L) s . (] LY e
LR . b, YA S . % . *% .o
e % o ! ., O . . LIAAd T I
- . oy ° sq @ 7 -~ . *
* . L : ° . A [ we 8 .": o e
® % ce® * ° » - “:.l: % 00 % ot
.t ! o’ . - N e % e el t
o e e’ ., - .. PLRAN N .
. L] ° LI
e el R L A I
- . . rl " o % . s
. P Y P ST AL SR S
. . . LY e, Seo o . e 8 o 9, o -
s . CR s e ,° @
-..' . e w o, e °, ° . ";.' et * .0 ”
° P . ode K .‘.'.o. . Py R . [N ] o . .. ;. -
oo . - . .
°® K -’% (0..0\.: . .t L) SR N . mar, .::‘..0. L :
. 00'-.- % . s %y ee® %0 *) .: . { - . ® Y .
o, "fs' [ . . o - *o% , © 'o’oo:. ve H * - . o.
L]
] 0 ¢ 3,° .:‘.:. . e #° & '..' 1 . 0 DR N
,0‘.".0 ‘vt g £° P Y % e [ ] “ .o o
PP 3, . ' ’..'.: % e e . .’ o ".o ‘o e ”
> . . bl . [ . od
. L] L r L]
. [ LY o . LI H ® Wl .
800 WS 4 o et . o [ ‘e # 'o‘ DR .!
[ A - . s J s & e o f%, s
o’ o . LI AR [ g3 B ® e
B
Ll
* L

’o

H
s ®e®

so g

Dimension 1

Figure 22: t-SNE Visualization of 10 Harpa species heatmaps - Dorsal viewAnalogous embedding for dorsal-
view Grad-CAM heatmaps. Again, H. articularis (yellow) and H. cabriti (gray) remain well separated, plus H.

kajiyamai (brown) clusters distinctly. However, many species (especially H. major, H. costata, H. harpa, H. doris)
still intermingle, underscoring view-dependent but overlapping attention patterns in the CNN’s dorsal perspective.

Analyzing the t-SNE visualization generated from the dorsal view Grad-CAM heatmaps for the ten Harpa species
provides further insights into the model's identification strategies. As with the apertural view, this plot shows
inherent structure with points grouped based on heatmap similarities, yet significant overlap between species'
attention patterns persists. Notably, the overall arrangement and relative positioning of the species clusters differ
distinctly from the apertural view map, confirming that the model generally employs different visual approaches
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depending on whether it sees the front or the back of the shell.

Several species appear to utilize relatively distinct dorsal attention strategies. Harpa articularis, represented by
Yellow/Olive points, forms a cohesive cluster in the lower-left quadrant, suggesting a unique dorsal focus.
Similarly, Harpa cabriti, shown as Grey points, groups reasonably well in the bottom-center area, indicating a
distinct strategy. In the upper right, Harpa kajiyamai (Brown) also forms relatively separated cluster. Additionally,
Harpa crenata (Purple) shows a clear tendency to cluster in the lower left.

However, significant overlap persists in the central and upper-left regions. Harpa major, now represented by
Cyan/Light Blue points, remains widely distributed throughout these areas, intermingling heavily with Harpa costata
(Orange), Harpa harpa (Green), and Harpa doris (Blue). This indicates substantial visual similarity between the
dorsal attention patterns used for H. major and these other species. In the lower left, Harpa amouretta (Red) points
are concentrated near and appear to overlap with Harpa crenata (Purple).

In conclusion, the dorsal view t-SNE analysis reveals that while some species like H. articularis and H. cabriti utilize
distinct attention strategies irrespective of view, many species exhibit dorsal heatmap patterns that are visually
similar to each other, especially clustering around the varied patterns used for H. major. These relationships and
overlaps differ from those observed in the apertural view, highlighting the view-dependent nature of the model's
learned visual strategies for identifying these Harpa shells.

Discussion

The results show that a convolutional neural network (CNN) trained on mollusk shell images is able to identify
different species using features that often align with those used by human experts, such as shoulder spines,
parietal spots, and distinct color patterns. Grad-CAM visualizations confirm that the network’s attention focuses on
these regions, addressing concerns about the “black box” nature of deep learning and suggesting that the features
uncovered by the CNN may also possess phylogenetic relevance. Interestingly, in some cases, the CNN ignored
or de-emphasized traits that taxonomists consider critical, such as the ventral blotch in H. articularis. This might
indicate that the model identifies equally valid or more consistent cues across varying photographic conditions,
potentially yielding new insights into shell morphology. This observation was also made in others studies on plants
[10] and fish [11].

The model achieved high overall accuracy (96% validation), indicating robust generalization. Species-specific
performance was generally strong, particularly for species with distinct features and adequate data like H. costata
(perfect metrics) and H. kajiyamai (98.9% F1). Grad-CAM analysis revealed the model's focus aligns well with
diagnostic characteristics across multiple species.

Species-specific patterns highlight the diversity of strategies the CNN adopts. For example, H. amouretta tends to
be classified through bold color banding, while H. articularis is often separated by rib structures and shoulder
spines. H. cabriti appears to prompt a blend of approaches — some focus on color, others on form. Smaller
classes, like H. gracilis, H. goodwini, and H. kolaceki, suffered from limited sample sizes, leading to more
confusion in the model outputs. t-SNE plots reinforced these observations by showing distinct clusters for certain
species, yet overlapping distributions for those with subtle morphological differences or within-species variation,
particularly in H. major. The correlation between high accuracy scores and clear Grad-CAM focus suggests the
CNN’s learned features are genuinely informative, whereas persistent misclassifications — like cabriti/harpa —
likely reflect genuine visual similarities.

These findings underline the broader importance of explainable Al (XAl) methods in biological morphology. By
localizing important regions in shell images and mapping them to known taxonomic features, Grad-CAM and t-SNE
strengthen trust in automatic identification tools while revealing possible alternative diagnostic cues. Integrating
genotype and environmental data offers an avenue for even deeper inquiry into how morphological traits develop in
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response to genetic lineage and ecological conditions, thus bridging phenotype, genotype, and environment within
a single analytical framework [13]. This could uncover how inheritance and adaptation shape species’ shell
appearances.

Crucially, these observations point to the prospect of deeper biological insights when other data modalities —
especially genotype and environment — are integrated. In other domains, CNNs have successfully fused
morphological images with genetic and ecological datasets [14], revealing how phenotypic variation can be
attributed to lineage-specific genetic factors or localized environmental pressures. Adapting this multi-modal
framework to mollusks could yield a more holistic account of how heritable traits and environmental conditions
converge to shape shell form [15]. For example, aligning CNN-extracted features with DNA barcoding data might
help confirm (or discover) cryptic species [14] and clarify the evolutionary significance of morphological traits.
Likewise, incorporating habitat variables would enable exploration of adaptive shell variations—such as the
potential role of substrate, temperature, or predation levels in influencing color patterns or shell thickness.

Despite these promising results, certain limitations remain. Web-scraped images can contain labeling errors or
exhibit wide variability in lighting and angle. Rare species are underrepresented, affecting classification accuracy
and interpretability. Methods like Grad-CAM, though illuminating, show only where the model is focusing, not the
complete causal reasoning behind its decisions. Parameter sensitivity in t-SNE and the challenge of interpreting
three-dimensional shells from two-dimensional photos further constrain the depth of these analyses. Interpretations
of localized heatmaps also depend on expert opinion, underscoring the subjectivity inherent in mapping network
activations to named morphological traits.

Looking ahead, a priority is to incorporate genetic markers or ecological metadata to better contextualize the
anatomical features identified by CNNs. By coupling shell images with data on habitat conditions and genotypic
variation, it becomes possible to explore how environment and lineage shape phenotype. Additional XAl
approaches, such as LIME or SHAP, could provide more nuanced explanations, while more systematic clustering
of heatmaps might uncover hidden identification “strategies” within or across species. Addressing misclassifications
by scrutinizing Grad-CAM outputs in incorrect predictions could refine data collection strategies and clarify whether
confusions stem from genuine morphological overlaps or overlooked diagnostic features. These extensions, along
with user-oriented evaluations of how well these visual explanations enhance trust, hold promise for advancing
automated shell identification and for fostering richer insights into the evolutionary processes that sculpt
morphological diversity.
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