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Abstract

Cone snails (genus Conus) comprise one of the most diverse groups of marine gastropods, with over
850 recognized species. Despite significant variability in coloration and subtle morphological traits,
Conus shells often appear similar in overall shape, making their accurate identification a fine-grained
image classification challenge. In this study, we present a convolutional neural network (CNN) model
trained on a large dataset of 130,373 images spanning 518 Conus species. Images were gathered
from multiple sources and extensively curated to address issues of inconsistent labeling and
background noise. Preprocessing steps included segmentation of individual shells, uniform
background replacement, and resizing, thereby standardizing visual inputs for the model.
Performance metrics (recall, precision and F1 score) show strong results, with an overall accuracy of
97% and macro-averaged precision and recall around 96-97%. Confidence intervals further support
the reliability of these findings, even for classes with fewer validation images. We compare our
approach with two previous Conus models: one developed at Naturalis Biodiversity Center and
another by Qasmi et al., each employing different image-processing and classification strategies. Our
results underscore that large-scale species coverage — when coupled with thorough preprocessing
— does not necessarily diminish model accuracy. Furthermore, the model’s solid performance amid
considerable species-level imbalances highlights the viability of CNN-based systems for difficult, fine-
grained biodiversity classification tasks. This comprehensive dataset and refined workflow pave the
way for future integrative studies that combine museum collections, citizen science, and advanced Al
methodologies to enhance Conus taxonomy and broader molluscan research.

Page 1 of 12


https://orcid.org/0009-0002-9238-4007

Introduction

The genus Conus (commonly known as cone snails) represents one of the most diverse groups of marine
gastropods, with a current total of 853 recognized extant species according to MolluscaBase and WoRMS
(WoRMS, MolluscaBase). The Conus genus is one of the largest in the Mollusca phylum. Until a decade ago,
its species were split across 89 genera [1], but are now largely consolidated within Conus genus (WoRMS,
MolluscaBase). Despite this tremendous species richness, cone snails exhibit a notable uniformity in general
shell shape and pattern, which differ only in subtle color variations, banding, or small morphological traits. As a
result, discriminating among the many Conus species becomes a daunting fine-grained image classification
challenge, demanding models that can isolate and interpret minute differences in shell markings.

The Conus CNN model is designed to learn features that capture these nuances, allowing it to separate
species based on visual cues in shell images. However, the complexity of this task escalates with the number
of species (i.e., classes) included: each new class introduces additional inter-class similarities and increases
the potential for misclassification [2]. Moreover, adding classes means collecting and processing more images,
thus necessitating greater computational resources and longer training times. In total, the dataset comprises
130 373 images across all included Conus species. Consequently, scaling a Conus CNN model to encompass
all 853 species underscores both the difficulty of fine-grained recognition and the importance of robust,
efficient training strategies.

The shells of the Conus genus have a characteristic morphology, the most important features for species
identification are pattern and colouration. Other important features are the form of the spire and the width
versus the length.

Table I. The Conus genus and the image dataset.

Parameter Value Comments

Species in the Conus 853 MolluscaBase/WoRMS accessed Jan 2025
genus

Species with images 529 Status Jan. 2025

Species with 25 images or 518 Status Jan. 2025. 11 species have less than 25
more images and were excluded.

Total number of images in 130 373 Status Jan. 2025

the dataset

Species with the most Conus textile,
images 2923 images

Methods

Data Collection

The dataset for the Conus CNN model comprises 130,373 shell images representing 518 Conus species (see
table I). From the 529 species for which images were collected, all species with less than 25 images were
removed (see Minimum number of images needed for each species). A total of 518 species were used. These
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images were aggregated from multiple sources, including online databases and museum or field photograph
repositories (Identifying Shells using Convolutional Neural Networks: Data Collection and Model Selection).
Additionally, broad community-driven efforts (e.g., citizen science platforms) have contributed to the pool of
images — modern biodiversity projects have amassed massive image collections of specimens. The dataset
comprises images from the following sources: museum collections (4.3%, 5640 images), online citizen
science platforms (18.1%, 23661 images) and commercial shell websites (77.6%, 101071 images). The
original Conus image dataset is 12% larger, many images were removed because the image quality is bad, or
other objects are visible in the picture (hands, other animals, labels, etc.). Also, images that contains more
than one shell and could not be split in images with only 1 shell were eliminated.

Hardware

An HP Omen 30L GT13 was used for training the model. It contains a Intel(R) Core(TM) i9-10850K CPU @
3.60GHz processor, with 64GB RAM, Nvidia GeForce RTX 3080 10GB.

Image preparation

All images were pre-processed. When an image contained multiple shells, we applied thresholding to binarize
the background and then used contour detection to locate each shell’s outline, cropping out each detected
contour as an individual image. The background was replaced with a uniform black background. A square
image was made by padding with a black background. All shells were resized (400 x 400 px). A final visual
selection was made before producing the final image dataset. Overall, 10-20% of the images were removed
for various reasons (when other objects were visible in the picture such as hands, habitat, text, etc.).

Annotation and Labeling Challenges

Preparing a labeled dataset of 518 species presents significant annotation hurdles. One major challenge is
taxonomic ambiguity. Cone snail taxonomy has been in flux — historically cone snails were split in 89 genera
[1], but the last decade most species were merged in the genus Conus (see MolluscaBase/WoRMS). As a
result, the same species might be known by multiple names, or what were once separate species might have
been merged. Such inconsistencies across image sources can lead to mislabeling (e.g., an image labeled with
an outdated name). Careful curation was needed to reconcile synonyms and ensure each image is tagged
with a valid, accepted species name.

Another challenge is the morphological similarity among species: many Conus shells differ only in subtle
pattern or color variations. Non-experts may confuse one species for another, especially if shell patterns
overlap or the specimen is an atypical individual. This means some portion of the images could be
erroneously labeled, introducing noise into the training data.

Metrics and confidence intervals

Metrics were calculated using the sklearn.metrics module, functions accuracy_score, precision_score,
recall_score, f1_score, confusion_matrix, classification_report were used. To calculate the confidence
intervals (95%). A cap of 200 images per species was employed when computing performance metrics and
confidence intervals, since sampling beyond this limit did not yield any improvement in the statistical estimates.
Bootstrapping was used [4]. Bootstrapping, being a non-parametric method, does not rely on the normality
assumption. A 1000 runs were performed for each species to calculate the intervals.

Results

The Conus image dataset

From these 529 species for which images are available, 518 have more than 25 images which were used to
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construct a model (see Minimum number of images needed for each species). These 518 species and the
number of images used are listed in Table Il (Supplementary Material). The distribution of images among
species is shown in the next figure.

Distribution of Images among Conus species
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# images per species

Figure 1: Distribution of images among the 518 Conus species available in the dataset

Many species have a low number of images. The first bin (25-170 images) has 293 species which is almost
half of all species. There are a few species with a large number of images; Conus textile has 2923 images,
Conus furvus 1976 images and Conus mercator 1703 images. There is a considerable imbalance in the
dataset. However, preliminary tests with oversampling the minority classes with augmented images (rotate,
flip, change brightness and contrast) did not improve the results significantly (data not shown).

Image Preparation

The dataset of 130,373 images was split into 80% training and 20% testing data. This means that the species
with the least images (total of 25 images) has 20 images in the training dataset. There may be more than 20
images if the original image shows several shells (or views of the same shell) because separate images were
made for each shell in the original images.

Model creation

The Conus model was created as described in Identifying Shells using Convolutional Neural Networks: Data
Collection and Model Selection. The hyperparameters used are provided in table Ill.

Table Ill. Hyperparameters

Hyperparameter Value Comments

Batch Size 64 The batch size determines the number of samples processed in each
iteration.

Epochs 100 The number of epochs determines how many times the entire training

dataset is passed through the model. Because early-stopping is used,
less than 100 epochs were needed. Fine-tuning usually requires fewer
epochs compared to training from scratch.
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Hyperparameter

Optimizer

Learning rate

Fine-tuning

Top layer
dropout

Regularization

Value

Adam

0.0002
top 3
layers

unfrozen

0.25

0.0001

Comments

The optimizer determines the algorithm used to update model weights
during training.

Some limited parameter tuning was performed, however the initial hyperparameters gave already good results
(data not shown). The learning rate was decreased from initial 0.0005 to 0.0002, and the top layer dropout
increased from 0.2 to 0.25 (see also Identifying Shells using Convolutional Neural Networks: Data Collection
and Model Selection). This limited hyperparameter tuning was done iteratively. The final training was run for
73 epochs using early stopping. Inference was performed on the validation set and analyzed using
Sklearn.metrics, classification_report. The summary statistics are provided in table IV.

Table IV. Summary statistics using sklearn.metrics

Statistic

Categorical Accuracy

Macro Average Recall

Macro Average Precision

Macro Average F1

Weighted Average Recall

Weighted Average Precision

Weighted Average F1

Value

0.97

0.96

0.97

0.96

0.97

0.97

0.97

Because a small number of validation images were used to calculate the metrics for a significant proportion of
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the species (180 species have less than 20 validation images), the confidence intervals were calculated for
the F1 score using bootstrapping. The metrics and confidence intervals are given in table V (Supplementary
Material). Only 6 species had low metrics (and large confidence intervals): Conus adenensis 0.540 (Cl: 0.193-
0.645), Conus auricomus 0.652 (Cl: 0.476-0.792), Conus compressus 0.696 (Cl: 0.428-0.880), Conus
conspersus 0.640 (Cl: 0.363-0.827), Conus gilvus 0.666 (Cl: 0.399-0.864), Conus turritinus 0.588 (Cl: 0.200-
0.823), and Conus vezzaroi 0.741 (Cl: 0.500-0.903). The figure below shows the distribution of the F1 score
for the validation set.

Distribution of F1 Score of Conus species
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Figure 2: Distribution of the F1 score for the validation set

The figure below shows a scatterplot where the number of images in the validation set is plotted against the
F1 score. Classes with a low F1 score (points on the left) consistently have a low number of validation images.
There are no classes shown with many validation images that result in a poor F1 score. As the F1 score
increases towards the right, the number of validation images per class varies widely. The dense, almost
vertical cluster on the far right indicates that many classes achieved a high F1 score, regardless of whether
they had a few or many validation images. A low number of validation images (and training images) is strongly
correlated with poor model performance. While having more images doesn't guarantee a perfect score, a lack
of images appears to be a primary factor for the classes where the model fails.
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Scatter Plot of F1 Score vs. Images
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Figure 3: Scatterplot of the F1 score versus number of images

When comparing the F1 score based on the validation set with the F1 Score where training set images were
added (to a max. of 200 images), we see for the majority of the species no large difference (see figure below).
Only for a few species, those that have a low "Validation" F1 Score, we see a large difference with the F1
Score that includes training images (the species Conus compressus, Conus gloriamaris, Conus turritinus and
Conus vezzaroi). This is expected, since testing on training data provides an easy performance boost that has
the largest impact on the lowest initial scores.

Distribution of Difference in Validation and Total F1 Score
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Figure 4: F1 score of the validation set vs. val. + train. set.

Confusion Matrix

The confusion matrix provides a class-by-class breakdown of the CNN model's performance. Overall, the
strong main diagonal indicates a high degree of accuracy across most species. However, the off-diagonal
values reveal that significant misclassification was confined to a few specific pairs. The most frequent
confusion occurred between Conus ardisiaceus and Conus aemulus, likely due to their remarkable similarity in
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shell morphology and color patterns. Other notable problem pairs included Conus asiaticus with Conus
alabaster, and Conus angasi with Conus adenensis. Beyond these specific cases, misclassifications for other
species were sparse and not concentrated in any particular group, suggesting the model's errors are
systematic to visually ambiguous species rather than random.

Visual inspection shows there are similarities between these species:

Table VI. Images of the most confused Conus species

Conus
ardisiacus

Conus
aemulus

Conus
asiaticus

Conus
alabaster

Conus
adenensis

Conus angasi

Significant misclassification was confined to these species. In contrast, misclassified individuals of other
species were not concentrated in any particular group.

Additional tests

Additional images were collected after model creation. This anecdotal test for several species confirms the
performance of the model (Table VII).

Table VII. Additional tests of the performance of the Conus model.

Species

Conus
ammiralis

Conus
striatus

Conus
mustelinus

Conus
merletti

Conus
amadis

Recall
(Conf.
interval)

0.98 (0.96-
0.995)

0.965 (0.935-
0.986)

0.994 (0.979-
1.0)

0.973 (0.903-
1.0)

0.975 (0.941-
1.0)

New

images

85

43

53

51

24

Correct

prediction

85

41

52

46

23

Wrong
prediction

Recall (for

test images)

1.00

0.95

0.94

0.89

0.90

Avg. (softmax)

probability

0.99

0.93

0.98

0.90

0.96
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Table VII presents the recall and associated confidence intervals calculated from the validation sets for each
tested species, alongside the classification outcomes for newly tested images. Two images of Conus striatus
were misclassified, although with relatively low prediction probabilities (0.58 and 0.55). More notably, four
images of Conus merletti were consistently misclassified. These images depict a single specimen
photographed from different angles and under slightly varying contrast conditions. All were incorrectly
identified as Conus moluccensis, a species visually similar to Conus merletti. Potential explanations for this
misclassification include the possibility that the specimen is genuinely Conus moluccensis rather than Conus
merletti, or that there are inaccuracies or overlaps within the training dataset—for example, Conus
moluccensis specimens mistakenly included within the Conus merletti class. Another interpretation is that
these two species might actually represent varieties of the same species.

Discussion

Developing a CNN-based classification model for the Conus genus involves a variety of unique challenges
stemming from both the taxonomic complexity of this group and the subtle characteristics that distinguish its
species. One of the most significant hurdles is that Conus species are primarily differentiated by their color
patterns, which can be very similar across species. Even minor variations in lighting, shell wear, and image
quality can obscure these differences, making it difficult for a CNN to accurately distinguish one species from
another.

Compounding this challenge is the sheer size of the Conus genus—currently recognized to include 853
species—making it one of the largest genera within the Mollusca phylum (WoRMS, MolluscaBase). Handling
such a large number of classes naturally demands more computational resources, including significant
memory capacity. As a result, training a Conus CNN model can be both computationally expensive and time-
consuming, often taking over four hours on our infrastructure.

Another important factor is that Conus shells are highly sought after by collectors, leading to a relatively large
pool of publicly available images. On the one hand, this abundance of data provides a rich resource for model
training. On the other hand, it requires careful data management to account for variations in image quality,
resolution, and lighting conditions, as well as potential imbalances in how frequently each species is
photographed.

Altogether, these considerations — high species diversity, subtle morphological and color distinctions, and a
sizable but inconsistently curated dataset — highlight the complexity of creating a robust Conus CNN model.
Building such a model requires thorough data curation, meticulous preprocessing, and a well-designed
computational infrastructure capable of supporting prolonged training periods. Our CNN model achieved an
accuracy of 97%, utilizing 130 373 cone snail shell images.

Before model training, extensive pre-processing is performed. All images were analyzed to detect the number
of shells in the image and a separate image was made for each shell. If possible, the background was
changed to black. A fixed input size of 400x400 pixels was used. Images were made square if needed. A final
manual step was included to select images that clearly show shell features that help in species identification.

Metrics calculated for each species (recall, precision and F1 score) shows that a large proportion of all species
can be identified reliably. Calculation of the confidence intervals support this conclusion.

Two other models of the Conus genus were created before, both with good performance [, 6]. The team at
Naturalis, Leiden created several models for several topics, including also a Conus model. The model was
trained on 797 Conus species, 15 877 images. Performance of the model was not communicated, but limited
tests (data not shown) show good performance. This suggests that even with a moderately sized dataset (15
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877 images), accurate species-level classification can still be achieved if the training images are curated
carefully and taxonomic labels are standardized (e.g., via WoRMS). N. Qasmi et al. have also made a Conus
Al model, based on 47 600 images on 119 Conus species. Their model has 95% accuracy using a
combination of Random Forest (RF), XGBoost (XGB) methods and feature extraction using a CNN.

The recently reported model by Qasmi et al. [6] employed a combined approach of deep learning (VGG16 for
feature extraction) and ensemble supervised learning (Random Forest and XGBoost). Notably, their workflow
involved explicit feature-engineering steps—such as color moments, local binary patterns, and Haralick
textures — before applying ensemble classifiers. This pipeline effectively demonstrated how hybrid methods
(deep feature extraction plus machine-learning classifiers) can yield strong performance in a challenging fine-
grained domain.

Compared to these two models, the CNN model described in this study substantially broadens the species
coverage to 518 species, incorporating 130,373 images — a dataset volume almost three times as large as
that of Qasmi et al. and well above the Naturalis pilot. Nonetheless, it attains a similarly strong performance:
an accuracy of 97% with a macro-average F1 score around 0.96. This outcome underscores two important
points:

1. Broader Taxonomic Scope vs. High Accuracy: Expanding classification from 119 to 518 Conus species
introduces further inter-class similarity, increasing the risk of misclassification. Despite this, the final
accuracy remains comparable to previous efforts, implying that large-scale coverage does not
necessarily diminish model precision—provided the dataset is well curated and sufficient computational
resources are available.

2. End-to-End CNN Training vs. Hybrid Feature Extraction: Unlike Qasmi et al.’s approach, which used a
CNN (VGG16) mainly for feature extraction before applying classical ensemble methods, this model
employs a fine-tuned convolutional neural network pipeline. Both methods illustrate valid strategies for
biodiversity image classification. Ensemble approaches may be easier to interpret or to integrate with
domain-specific features, whereas fine-tuning a CNN can leverage the model’s internal feature
hierarchy, especially when the training set is extensive.

Another distinguishing factor is the volume and diversity of images. In the Naturalis pilot, images came
predominantly from a handful of museum collections plus some private collections (15,877 total) [5]. Here,
over 130,000 images were aggregated from a wide array of sources, including community-driven repositories,
potentially bringing greater variance in lighting conditions, viewpoints, and shell morphologies. While this
diversity strengthens generalizability, it also escalates demands on data preprocessing, standardization, and
computational power. In particular, the workflow included automated image segmentation (one shell per
image) and uniform background replacement—steps that appear to significantly streamline model training.
Both the Naturalis pilot and Qasmi et al. [6] used similarly rigorous approaches for data cleaning, but with
smaller datasets and fewer species, the effect of image variation may have been comparatively lower.

At last, a notable distinction in the current study is the use of transfer learning and fine-tuning, particularly
leveraging an EfficientNet architecture pretrained on ImageNet. Although ImageNet does not contain seashell
images, the extensive and diverse features learned from over a million labeled images still confer a significant
advantage when training on the Conus dataset—or any other seashell dataset. By pretraining on ImageNet
and then fine-tuning on domain-specific images, the model inherits rich, general-purpose visual
representations that aid in discerning even subtle morphological details of shells. This approach is particularly
effective for fine-grained biodiversity classification, where expert-labeled data are often scarce and species
distinctions can be minute. [7].

Although direct performance comparisons can be confounded by differences in taxonomy, image sources, or
evaluation protocols, these concurrent findings strongly support the viability of Al-based classification for large,
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visually diverse mollusk genera. Future work may involve combining the strengths of these approaches:
unifying data from multiple sources, benchmarking different architectures or ensemble methods, and
assessing the impact of refined taxonomic standards on model reliability.

One of the major challenges in building a robust Conus classification model is the imbalance in species
representation, where some species have thousands of images while others have only a few. This imbalance
is a common issue in biological datasets, where rare or newly discovered species often have limited available
data [1, 2]. Few-shot learning techniques based on meta-learning and contrastive learning have been
successfully applied in biodiversity classification to address data scarcity [8]. In recent studies, prototypical
networks and metric-based learning have enabled models to recognize species with only a few labeled images
by learning generalized feature spaces that capture taxonomic similarities [9, 10]. Similarly, contrastive
learning, which pretrains models using large unlabeled datasets, has demonstrated superior transferability for
species recognition tasks [11, 12]. Future work could explore such approaches to enhance classification
performance for Conus species with very few training images, reducing the impact of dataset imbalance. By
incorporating these advanced transfer-learning methods, Al models could better support biodiversity research,
particularly for rare and underrepresented species.

This Conus Al model is a node of the hierarchical CNN model available at Identifyshell.org.

Conclusion

In summary, this work demonstrates the feasibility and accuracy of a large-scale CNN-based classification
model for Conus shells — one of the most diverse and taxonomically challenging groups within the Mollusca.
By assembling a dataset of over 130 000 images representing 518 species, we highlight the key hurdles
inherent to fine-grained shell identification, including taxonomic ambiguity, limited or imbalanced species-
specific data, and subtle morphological differences. Careful data curation, background standardization, and
strategic model fine-tuning were crucial in achieving consistent performance across hundreds of species, as
evidenced by high macro-averaged metrics and reliable confidence intervals.

The findings underscore that high coverage of Conus species need not compromise classification accuracy,
provided the dataset is sufficiently robust and preprocessing steps are meticulously executed. Comparing our
results to earlier Conus Al models further illustrates how diverse computational strategies—ranging from end-
to-end CNN training to hybrid feature extraction—can yield strong results in challenging biodiversity contexts.
These approaches collectively validate the viability of automated shell recognition on a scale that can
significantly accelerate research and improve collection management for museums, citizen science platforms,
and other stakeholders interested in marine biodiversity.

Supplementary Material

Tables Il (Images per Species) and Table V (Performance Metrics per Species) are available at DOI:
10.5281/zenodo.16013529.
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